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Abstract

The CONTAM Panel updated the assessment of the risks for human health related to the presence of
3-monochloropropane diol (3-MCPD) and its fatty acid esters in food published in 2016 in view of the
scientific divergence identified in the establishment of the tolerable daily intake (TDI) in the Joint
FAO/WHO Expert Committee on Food Additives and Contaminants (FAO/WHO) report published in
2017. In this update, dose–response analysis was performed following the recent EFSA Scientific
Committee guidance on the use of benchmark dose (BMD) approach in risk assessment, and a review
of available data on developmental and reproduction toxicity was included. The outcome of this review
indicates that in rats short-term exposure to 3-MCPD above 1 mg/kg body weight (bw) per day can
induce reduced sperm motility associated with reduced male fecundity. Decreased sperm count and
histopathological changes in the testis and epididymis were observed following longer treatment
periods at higher doses. Regarding increased incidence kidney tubular hyperplasia, BMD analysis using
model averaging resulted in a BMDL10 of 0.20 mg/kg bw per day in male rats, which was selected as
the new Reference Point (RP) for renal effects. For the effects on male fertility, decreased sperm
motility was selected as the most sensitive relevant endpoint and a BMDL05 of 0.44 mg/kg bw per day
was calculated. The RP for renal effects was considered to derive an updated group TDI of 2 lg/kg bw
per day for 3-MCPD and its fatty acid esters and was considered protective also for effects on male
fertility. The established TDI of 2 lg/kg bw per day is not exceeded in the adult population. A slight
exceedance of the TDI was observed in the high consumers of the younger age groups and in
particular for the scenarios on infants receiving formula only.
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Summary

In 2016, the Scientific Opinion of the EFSA Panel on Contaminants in the Food Chain (CONTAM
Panel) on the risks for human health related to the presence of 3- and 2-monochloropropane diol
(MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food was published. These
substances were subsequently assessed by the Joint FAO/WHO Expert Committee on Food Additives
(JECFA) in 2016, with some divergence primarily regarding the health-based guidance value derived
for 3-MCPD. For 3-MCPD and its fatty acid esters, the CONTAM Panel established a tolerable daily
intake (TDI) of 0.8 lg/kg body weight (bw) per day, whereas JECFA established a TDI of 4 lg/kg bw
per day. This difference in hazard characterisation was due to methodological differences in the
application of the benchmark dose (BMD) approach. In view of the recent EFSA Scientific Committee
guidance on the use of BMD approach in risk assessment published in 2017, the CONTAM
Panel considered that an update of its 2016 Scientific Opinion is warranted regarding 3-MCPD and its
fatty acid esters in food. This update should include a review of the available data on developmental
and reproduction toxicity of 3-MCPD and conclusion on the importance of these endpoints on the
hazard characterisation of the substance.

A comprehensive search for literature was conducted for peer reviewed publications pertaining to
identification and characterisation of reproductive and developmental effects of 3-MCPD and 3-MCPD
fatty acid esters, resulting in the selection of 26 papers of which 12 were considered suitable for dose–
response analysis.

Most of the animal studies with free 3-MCPD and 3-MCPD esters included in this review were
carried out in rats. All studies except one were conducted using racemic 3-MCPD. Various exposure
scenarios were tested, with the most sensitive effect being reduced epididymal sperm motility.
Continued and higher exposures affected epididymis and testis and a range of related fertility
parameters. The sperm motility effects were reversible in a few weeks after cessation of treatment.
The available studies in combination lead to an overall no-observed-adverse-effect level (NOAEL) of
1 mg/kg bw per day. 3-MCPD fatty acid esters were tested in two studies and revealed
histopathological effects in testis and epididymis at doses corrected for free-3-MCPD content above the
NOAEL for free 3-MCPD.

The kidney and testis were found to be the main target organs for 3-MCPD-induced toxicity in
animal studies. The toxic effects of 3-MCPD in both target tissues seem to be associated with its
oxidative metabolism to b-chlorolactaldehyde and b-chlorolactic acid, which inhibit glycolytic enzymes
and causes oxidative stress, leading to the toxicological manifestations observed in kidney and male
reproductive system. BMD modelling of renal tubular cell hyperplasia applying the new EFSA Scientific
Committee guidance on the use of BMD model averaging, based on the set of models recommended
by the guidance and excluding additional parameter constraints, was considered as the preferable
approach for the selection of the Reference Point (RP). Tubular hyperplasia was reconfirmed as the key
effect in kidneys of rats and a BMDL10–BMDU10 interval for 3-MCPD of 0.20–1.95 mg/kg bw per day
was obtained using model averaging. The BMDL10 using model averaging is about two folds higher
than the one derived in the previous EFSA opinion (0.08 mg/kg bw per day). The different outcome of
the BMD analyses between JECFA and the European Food Safety Authority (EFSA) using the same data
sets on male rat kidney hyperplasia was due to the initial selection of models and parameter
constraints applied.

The CONTAM Panel also reviewed available dose–response data on male fertility parameters. A
decrease in the percentage of motile sperm was observed in several independent studies in rats
(mainly Sprague–Dawley) exposed for 1–2 weeks to 3-MCPD doses ranging from 1 to 30 mg/kg bw
per day. A study was selected for BMD modelling, in which a dose-related decrease in the percentage
of motile sperm was observed, with concurrent decreases in a series of sperm motility parameters, of
which curvilinear velocity (VCL) was considered the most sensitive relevant endpoint. BMD modelling of
sperm VCL resulted in a BMDL05–BMDU05 confidence interval of 0.44–3.88 mg/kg bw per day.

3-MCPD seems to have minor effects on sperm count following short-term exposure (2 weeks or
less) at doses up to 10–30 mg/kg bw per day. However, exposure of rats for 13 weeks resulted in a
dose-dependent decreasing trend of epididymal sperm count, achieving statistical significance at
≥ 4 mg/kg bw per day. Because of high variance of the data (relative standard deviation ranging from
20% to 50%) and fertility being rather insensitive to loss of sperm count in rats, the CONTAM
Panel decided to apply one standard deviation of the control group (equivalent to an effect size of
23%) as a benchmark response (BMR). The BMDL23 of 1.34 mg 3-MCPD/kg bw per day was
determined for decrease in rat sperm count.
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The loss of sperm in epididymis was generally associated with histopathological changes. BMD
analysis of two data sets was carried out applying model averaging and resulted in BMDL10–BMDU10

confidence intervals of 1.55–14.4 mg 3-MCPD/kg bw per day for the chronic increased incidence in
seminiferous tubular atrophy, and 1.34–8.50 mg 3-MCPD/kg bw per day for the increased vacuolisation
of the epididymal epithelium.

A single study was identified in which potential developmental effects of 3-MCPD were considered.
No fetal toxicity, macroscopic malformations, histopathological changes in the testis, or reduced body
weights were observed in fetuses from all treatment groups. Although this study has some limitations,
it does not suggest a concern towards possible developmental effects of 3-MCPD at doses at which
renal and male fertility effects are observed.

Although effects on kidney and male reproductive system start to appear at similar doses, the RP
for renal tubule cell hyperplasia was the lowest (0.20 mg 3-MCPD/kg bw per day). It is therefore
considered protective also for effects on the male reproductive system and was selected as the critical
effect caused by chronic exposure to 3-MCPD and its fatty acid esters. The critical effect is considered
to cover any 3-MCPD-related additional cancer risk as well. For the protection of human health from
adverse effects of 3-MCPD, the CONTAM Panel applied an overall uncertainty factor of 100 to the
selected reference point (0.20 mg/kg bw per day) to account for intraspecies and interspecies
differences, and derived an updated group TDI of 2 lg/kg bw per day for 3-MCPD and its fatty acid
esters (expressed as MCPD equivalents).

Dietary exposure assessment to 3-MCPD and its esters was performed in the previous EFSA opinion
of 2016 considering exposure levels to the parent compound, regardless of the original form. The
mean and high (P95) chronic dietary exposure estimates were higher for the younger age groups
(infants, toddlers and children up to 10 years of age) in comparison to adolescents and the adult age
groups. Mean exposure levels (reported as minimum lower bound-maximum upper bound) ranged
from 0.5 to 1.5 lg 3-MCPD/kg bw per day across the dietary surveys for the younger age groups, and
from 0.2 to 0.7 lg 3-MCPD/kg bw per day in adolescents and adult age groups. High exposure levels
ranged from 1.1 to 2.6 lg 3-MCPD/kg bw per day in the younger age groups, and from 0.3 to 1.3 lg
3-MCPD/kg bw per day in adolescents and adults age groups. Specific scenarios were considered for
infants receiving formula only, based on mean and P95 occurrence of 3-MCPD in this products. The
respective exposure estimates were 2.4 and 3.2 lg 3-MCPD/kg bw per day.

The CONTAM Panel noted that the established TDI of 2 lg/kg bw per day is not exceeded in the
adult population (mean and high exposure levels). A slight exceedance of the TDI was observed in the
high consumers of the younger age groups and in particular for the scenarios on infants receiving
formula only.

Regarding the exposure assessment, the CONTAM Panel confirmed the uncertainties already
identified in the 2016 opinion. Additionally, a general lack of data on the developmental and
neurodevelopmental effects of 3-MCPD was noted, in particular in infants and juveniles (ex utero
development). Also, existing chronic studies did not cover adequately male reproductive toxicity and
fertility parameters; therefore, there is uncertainty on the long-term effects of 3-MCPD on these
endpoints. The exposure assessment most likely underestimated the exposure. Overall, the CONTAM
Panel concluded that the impact of the uncertainties on the risk assessment is high.
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1. Introduction

1.1. Background and Terms of Reference as provided by the requestor

In May 2016 the Scientific Opinion of the CONTAM Panel on the risks for human health related to
the presence of 3- and 2-monochloropropane diol (MCPD), and their fatty acid esters, and glycidyl
fatty acid esters in food was published (EFSA CONTAM Panel, 2016). These substances were
subsequently assessed by the Joint FAO/WHO Expert Committee on Food Additives and Contaminants
(JECFA) at their 83rd meeting (8–17 November 2016).

Following the publication of the JECFA meeting summary report JECFA on 23 November 2016
(FAO/WHO, 2016), the CONTAM Panel identified a scientific divergence regarding the risk assessments
of 3-MCPD and its fatty acid esters and glycidyl fatty acid esters. While there is a substantial alignment
of the two scientific bodies in the identification of the hazards for 3-MCPD and its fatty acid esters and
glycidyl fatty acid esters, the divergence consists mainly in the dose-response analyses performed, due
to methodological differences in the application of the benchmark dose (BMD) approach. For glycidyl
fatty acid esters, the CONTAM Panel, considering the limitations in the design of the pivotal study
identified for hazard characterisation, and in view of the high uncertainties associated with the BMD
analysis of the aforementioned study dataset, derived a T25 of 10.2 mg/kg bw per day as reference
point for the application of the Margin of Exposure (MOE) approach in compliance with the 2005
opinion of the EFSA Scientific Committee (EFSA, 2005). JECFA considered the BMD approach
applicable also in the case of glycidyl fatty acid esters. Despite the different approaches used for dose-
response analysis, the outcome of the risk assessments on glycidyl fatty acid esters was largely
consistent between JECFA and the CONTAM Panel. For 3-MCPD and its fatty acid esters, the CONTAM
Panel established a Tolerable Daily Intake (TDI) of 0.8 lg/kg bw per day, whereas JECFA established a
TDI of 4 lg/kg bw per day. This difference has an important impact in the outcome of the risk
assessment performed by the two bodies. In addition to the differences in the BMD approach, a
different interpretation of the weight of evidence of the available information on reproductive and
developmental toxicity of 3-MCPD was noted, leading JECFA to apply an extra assessment factor of 2
for the derivation of the TDI to take the inadequacies in the studies of reproductive toxicity into
account.

Following a detailed analysis of the divergence, an exchange of views with the EFSA Scientific
Committee working group on BMD and consultation with the EFSA Scientific Committee, the CONTAM
Panel considers that an update of its Scientific Opinion is warranted in view of the updated guidance of
the EFSA Scientific Committee on the use of benchmark dose approach in risk assessment (EFSA
Scientific Committee, 2017), in particular to address the divergence identified for the assessment of
3-MCPD and its fatty acid esters.

With regard to the different dose-response approaches used for glycidyl fatty acid esters, it was
noted that the large uncertainties due to the limitations in the available experimental data cannot be
reduced by application of the new BMD guidance. It was furthermore noted that an adequate
refinement of the dose-response analysis can only be achieved with the availability of a carcinogenicity
study conducted with an appropriate design.

The following Terms of Reference (TORs) are considered:

• to review the dose-response analysis carried out for 3-MCPD and its fatty acid esters,
considering the Scientific Committee guidance on the use of BMD in risk assessment;

• to review the available data on developmental and reproduction toxicity of 3-MCPD and
conclude on the importance of these endpoints on the hazard characterisation of the
substance;

• if relevant, based on the outcome of the previous tasks, to review the establishment of Health
Based Guidance Value, as well as risk characterisations for 3-MCPD and its fatty acid esters;
and

• to update the relevant sections of the opinion as adequate depending on the outcome of the
previous tasks.
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2. Data and methodologies

2.1. Methodologies

2.1.1. Literature search and appraisal of studies

A comprehensive search for literature was conducted for peer reviewed publications pertaining to
identification and characterisation of reproductive and developmental effects of 3-MCPD and 3-MCPD
fatty acid esters. A strategy was developed for the literature search and selection of relevant
publications. The scope was to focus on studies allowing for the performance of dose–response
analysis in a relevant dose range close to that at which renal toxicity was observed. This corresponds
to the ‘low-dose’ range for male fertility effects identified in the previous opinion (EFSA CONTAM Panel,
2016).

1) Literature search

a) Consulted databases: Embase, PubMed and Web of Science
b) Keywords: Free text search (title and abstract):

reproduct*, reprotox*, development*, embryo*, fetus, foetus, fetal, foetal, fertility,
infertility, sterility, antifertility, sperm, abnormalit*, teratogen*, malformation*, prenatal
exposure, prenatal disorder*, abortion*, miscarriage*, resorption, gestation*, pregnan*

c) MESH/Emtree terms:

Mesh terms Emtree terms

Anatomy “Urogenital System”[Mesh] ‘genital system’/exp
“Embryonic Structures”[Mesh]: includes embryo,
fetus

‘embryonic and placental structures’/exp
‘animal embryo’/exp

Physiology “Reproductive Physiological Phenomena”[Mesh]:
includes fertility, reproduction

‘reproduction’/exp: includes mother fetus
relationship
‘genital system function’/exp

“Developmental Biology”[Mesh]: includes
embryology and teratology

‘developmental biology’/exp
‘prenatal development’/exp

“Growth and Development”[Mesh] ‘prenatal growth’/exp
Pathology “Maternal-Fetal Relations/drugs effects”[Mesh]

“Infertility”[Mesh] ‘infertility’/exp
“Pregnancy Complications”[Mesh]: includes: foetal
disease; prenatal exposure delayed effects

‘pregnancy disorder’/exp
‘prenatal disorder’/exp
‘developmental disorder’/exp: includes
developmental toxicity

“Teratogens”[Mesh] ‘teratogenicity’/exp
‘embryotoxicity’/exp

“Abnormalities, Drug-Induced”[Mesh] ‘congenital malformation’/exp

d) No filter included for the year of publication

2) Exclusion criteria

The following criteria were used to exclude publication, based only on the reading of titles
and abstracts:

a) In vivo studies in non-mammal species
b) Route of administration: not oral
c) Papers without English abstract
d) Papers regarding human male contraception
e) Conference abstracts, no full text available

The full texts of publications passing the first tier of exclusion were screened and
publications not meeting the following criteria were excluded:

f) At least two doses of 3-MCPD or 3-MCPD esters and a concurrent control group tested
g) Lowest tested dose < 5 mg/kg body weight (bw) per day
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3) Study appraisal

Publications passing the inclusion/exclusion phase were appraised by the members of the
CONTAM Panel Working Group on 3-MCPD update for their final inclusion in the assessment,
based on expert judgement. Any limitations in the information used are documented in this
scientific opinion. Selection of scientific papers was based on consideration of the extent to
which the study was relevant to the assessment and general consideration on the reliability
of the study.
No systematic appraisal was performed for the identified review papers, which were used for
the narrative description of the mode of action of 3-MCPD towards the reproductive system.

2.1.2. Methodology applied for risk assessment

The CONTAM Panel applied the general principles of the risk assessment process for chemicals in
food as described by WHO/IPCS (2012), which include hazard identification and characterisation,
exposure assessment and risk characterisation. Additionally to the principles described by WHO/IPCS
(2012), EFSA guidance pertaining to risk assessment has been applied for the present assessment (see
Appendix B).

2.2. Data

2.2.1. Outcome of literature search

The applied literature search and inclusion/exclusion strategy resulted in the selection of 26
publications. The numbers of initially retrieved hits and of publication excluded in the phases described
in Section 2.1.1 is described in Figure 1.

Figure 1: Flow chart describing the number of publications retrieved and subsequent selection
applying the search and the exclusion criteria detailed in Section 2.1.1
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The full texts of the 29 articles meeting the agreed inclusion criteria were appraised for their
reliability and relevance to the risk assessment. Twelve articles were considered as suitable for the
dose–response analysis. The list of the selected 29 papers is reported in Appendix A.

3. Assessment

3.1. Reproductive and developmental toxicity

3.1.1. Free 3-MCPD

Vickery et al. (1974) used a number of study designs in terms of dose levels, timing and duration
of exposure and parameters to assess the effects of 3-MCPD on male reproductive organ, sperm and
fertility parameters. Groups of five male SD rats (300–350 g) were treated for 21 days to 4 months by
daily oral gavage with 0, 0.2, 1.0, 2.5, 5.0, 10 or 25 mg/kg bw, or 1.25, 2.5, 5 or 10 mg 3-MCPD/kg
bw. They studied fertility by mating and implantation data, uterine fertilised egg count, uterine sperm
counts after mating, and histopathology of male reproductive organs. Following the first dosing
regimen, there was an overall no-observed-adverse-effect level (NOAEL) of 1 mg/kg bw per day and a
lowest-observed-adverse-effect level (LOAEL) of 2.5 mg/kg bw per day as to fertility determined by
mating directly after 21 days exposure. Number of fertilised eggs was zero at the LOAEL of 2.5 mg/kg
bw per day directly after a 3-week exposure. Male pituitary weight was reduced after a 3-week
exposure to 0.2, 1.0 and 2.5 mg/kg bw per day but not at higher doses. After the second dosing
regimen, there was no NOAEL for recovery of uterine fertilised eggs after mating, with a LOAEL of
1.25 mg/kg bw per day. The number of motile sperm flushed from oviduct and uterus after mating
was reduced with a LOAEL of 2.5 mg/kg bw per day and a NOAEL at 1.25 mg/kg bw per day. Fertility
returned to normal 2 weeks (2.5 mg/kg bw per day) or 4 weeks (10 mg/kg bw per day) after the last
dose after 4 months dosing. Pituitary weight was increased at all doses after cessation of 4 month
treatment.

Hoyt et al. (1994) treated groups of 10 adult male SD rats (16 weeks of age) with 0, 1, 5 or
25 mg/kg bw 3-MCPD by gavage over 14 days. At day 15, five animals from each group were
cohabitated with two virgin female rats (9 weeks of age) each for 14 days and then sacrificed at day
29. The five other male animals were sacrificed at day 15. At a dosage of 25 mg/kg bw, the authors
found increased testicular weights at day 15 and changes in testicular cell ploidy at days 15 and 29
combined. A significant decrease in mean sperm concentration was recorded at 25 mg/kg bw per day
both at day 15 and 29. Sperm motility was decreased at 5 mg/kg bw, and changes were observed in
all other sperm parameters tested at 25 mg/kg bw. Fertility was lost at dose levels of 5 and 25 mg/kg
bw. These data indicate a NOAEL of 1 mg 3-MCPD/kg bw per day for effects on male fertility and
reproductive functions in rats.

Yamada et al. (1995) treated 7-week-old Crj:CD(SD) rats for 2 weeks by daily oral gavage with 0,
2, 8 mg/kg bw 3-MCPD. One additional 8 mg/kg group was treated for 4 weeks. A number of 19, 7
and 19 rats were used for exposure in each group, respectively, and 14, 7 and 14 rats were selected
for subsequent mating. Parameters assessed included motility of epididymal sperm, sperm counts and
sperm morphology, and male reproductive organ histopathology. Fertility was assessed by mating and
fertility indices and mid-gestation implantation data. Full recovery was observed 2 weeks after last
dosing. In both the 2 and 8 mg/kg bw per day groups, sperm motility was decreased immediately
after last dosing (with infertility at 8 mg/kg), but both parameters returned to normal 2 weeks
later. Other sperm parameters (number, viability, maturation) were unaffected. No effects were
observed on prostate and epididymis weights and histopathology. The authors identified an overall
LOAEL of 2 mg/kg for sperm motility and fertility immediately after last dosing. No NOAEL could be
determined in this study.

Effects of oral exposure to 3-MCPD on fertility in male rats were investigated as part of a
consortium effort to determine the optimal period and parameters for detection of male fertility
disorders in rats (Takayama et al., 1995). Male Sprague–Dawley rats (N = 7, unknown age and body
weight at the start of the test) were dosed with 3-MCPD at 0, 2 or 8 mg/kg bw per day by oral gavage
for 2 weeks. At the end of the exposure period, the males were mated with untreated females. Males
were then killed for examination. There were no effects on reproductive organ weight and no
histopathological changes were observed in the testis and epididymis. Sperm numbers, viability and
maturation were unchanged, but sperm activity in the 2 and 8 mg/kg bw per day group, and sperm
motility in the 8 mg/kg bw per day group were decreased. Treatment of males with 8 mg/kg bw per
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day for 2 weeks resulted in complete infertility without affecting the copulation rate. Full restoration of
sperm motility, sperm activity and fertility was observed after 2 weeks of recovery from 3-MCPD
treatment.

The relationship between male fertility and loss of sperm motion as a result of oral 3-MCPD
exposure was investigated in Sprague–Dawley rats (Crj:CD) (12 weeks of age) (Ban et al., 1999). Four
experiments were carried out with 3-MCPD, given to males by gavage daily for 9 days at doses of 0, 1,
3 and 10 mg/kg bw per day (Experiments 1 and 2) or 0, 3 and 10 mg/kg bw per day (Experiments 3
and 4). In the first experiment, 15 males were mated with untreated females. Pregnant dams were
killed on day 15 of gestation, and the number of corpora lutea and implants examined. Treatment with
3-MCPD had no effect on copulation. The fecundity was 100% in the control and 1 mg/kg per day
groups, but fell significantly to 60% and 0% in the 3 and 10 mg/kg bw per day groups, respectively.
In experiment 2, 3-MCPD-treated males (N = 12–13) were killed the day following the final dose and
cauda epididymis removed and prepared for histology and sperm count. Sperm were retrieved from
vas deferens and analysed for sperm motions using an automated analyser. Exposure to 3-MCPD had
no effect on weight of cauda epididymis, testes or whole body. There were also no effects of 3-MCPD
on epididymal sperm numbers or histopathology. In contrast, the percentage of motile sperms was
reduced in the 10 mg/kg bw per day group, and curvilinear velocity and amplitude of head
displacement were decreased at ≥ 3 mg/kg bw per day. Experiment 3 was carried out to investigate if
the reduced sperm motion caused by 3-MCPD exposure influenced the ability of sperm to reach the
oviduct. Male rats (N = 8–12 per group) were mated with untreated females after the final dose. There
was a dose-dependent reduction in the number of sperms collected in the oviducts, to less than 1% of
controls in females mated with males exposed to 10 mg/kg bw per day. A fourth experiment was
carried out to study the fertilisation in the oviducts of females mated with males (N = 11–12 per
group) exposed to 3-MCPD. The percentage of fertilised eggs decreased significantly from 95% in
females mated with control males, to 29 and 4% in males mated with males exposed to 3-MCPD at 3
and 10 mg/kg bw per day, respectively. There was no histopathological effect in testes or epididymis
up to the highest dose. These data indicate a NOAEL of 1 mg 3-MCPD/kg bw per day, based on dose-
dependent decrease in sperm motility and consequential decrease in fecundity observed at 3 and
10 mg 3-MCPD/kg bw per day.

Mineshima et al. (2000) reports on a ring study involving 11 laboratories, comparing five different
rat sperm motility test methods. Using 3-MCPD as a test compound affecting epididymis sperm
motility, 10–15-week-old male rats, in most labs of the Crj:CD strain, were orally treated for 1 week (in
one lab for 2 weeks) with dose levels of 2.5, 5 and 10 mg/kg bw per day. Four to ten animals per
dose group were treated. Sperm parameters assessed included motility of epididymal sperm, sperm
counts and sperm morphology. Male fertility was assessed by 1:1 mating with females, copulatory plug
observation and midterm observation of fertility index and litter data. There was an overall LOAEL of
2.5 mg/kg for motility (1 week exposure) and fertility, with fertility reduced to 10% only after 2 weeks
exposure. At 5 mg/kg bw per day after 1 week exposure, motility was affected and fertility reduced to
0–30%; at 10 mg/kg bw per day after one week exposure, motility was affected and fertility reduced
to 0%. No NOAEL could be determined from this study.

The effects of oral exposure to 3-MCPD on sperm motility and fecundity was studied in Sprague–
Dawley rats (Crj:CD) as a part of a larger investigation into the performance of an automated sperm
motion analyser (Ban et al., 2001). The study included experiments previously published by Ban et al.
(1999) and Kaneto et al. (1999). Importantly, this study also looked at the recovery of male sperm
motility and other fertility variables up to 4 weeks following the last dose. Oral gavage of male rats to
0, 3 or 10 mg 3-MCPD/kg bw per day for 9 days resulted in the reproductive effects described by Ban
et al. (1999). After a 2-week recovery period of the high-dose group, mobility of sperm collected from
vas deferens and fecundity metrics started to recover and all variables measured were back to control
levels after 4 weeks of recovery. In a separate experiment, male Sprague–Dawley rats (Crj:CD) were
dosed with 0 or 16 mg 3-MCPD/kg bw per day for 2 weeks and sperm were collected from vas
deferens after 1 day, 3 days, 3 weeks and 4 weeks following the last dose. One day after the last
dose, percentage motile sperm and almost all parameters used to describe sperm mobility were
decreased. After recovery for 3 and 4 weeks, all sperm mobility values were completely restored. In
addition to confirming previous published results by Ban et al. (1999) and Kaneto et al. (1999), this
study importantly shows complete reversibility within 4 weeks of the effects of 3-MCPD on sperm
motility caused by short-term (2 weeks) exposure up to 16 mg/kg body weight per day (the highest
dose tested).
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Li et al. (2003) treated male SD rats (22 animals per group, unknown age and body weight at the
start of the test) with 0, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 or 16.0 mg 3-MCPD/kg bw per day by gavage over
90 days. A decrease in epididymis sperm count was found at the end of the study in the 4.0 mg/kg bw
group and at higher dose levels. Sperm viability was reduced at 8.0 mg 3-MCPD/kg bw per day and
above. The authors reported histopathological evidence for decreases in the number of mature sperm in
the epididymal duct in rats exposed to 8 and 16 mg/kg bw per day. Testicular lactate dehydrogenase-X
activity was decreased at 8.0 mg/kg bw per day and above. In comparison, adverse renal effects
(increase in relative kidney weight, increase in urinary N-acetyl-b-glucosidase activity) were found at
4.0 mg 3-MCPD/kg bw per day and above. From these data, a NOAEL of 2.0 mg/kg bw per day could be
derived for adverse effects of 3-MCPD on both rat testis and kidney after 90 days.

A subchronic study in B6C3F1 mice was performed by Cho et al. (2008a). Ten mice/sex per group
were exposed to 0, 5, 25, 100, 200 or 400 mg 3-MCPD/kg bw per day in drinking water over a
13-week period. Average doses of 0, 0.94, 4.59, 18.05, 36.97 or 76.79 mg/kg bw per day and 0, 0.79,
3.94, 15.02, 32.23 or 61.34 mg/kg bw per day were calculated by the study authors for males and
females, respectively. Animals were checked daily for clinical signs of discomfort, morbidity and
mortality and body weight. Food and water consumption were recorded on a weekly basis during
the exposure period. Haematology and blood chemistry analyses were performed at the end of the
exposure period. Sample of vaginal fluid and cells were collected for 12 consecutive days before the
sacrifice and cellular populations were studied to determine the oestrus cycle stage. Testis and
epididymis were weighed and the cauda epididymis was isolated and analysed for sperm motility. A
complete necropsy of the sacrificed animals was carried out and histopathology analyses were
performed at the end of the exposure period. No changes in testis and ovary weights were observed
in mice treated with 3-MCPD compared to the control groups. Decreased sperm motility was
observed only at 76.8 mg 3-MCPD/kg bw per day. An increase in mean length of the oestrus cycle was
observed in all treatment groups without a clear dose–response trend, achieving statistical significance
at 61.3 mg 3-MCPD/kg bw per day. An increase in incidence and severity of germinal epithelium
degeneration was observed in the testes of animals exposed to ≥ 4.59 mg 3-MCPD/kg bw per day,
achieving statistical significance at ≥ 37.0 mg 3-MCPD/kg bw per day. No significant changes were
observed in ovaries in any treatment group. Overall, a NOAEL of 0.94 mg/kg bw per day for
reproductive effects can be identified from this study.

Groups of SD rats (50 rats/sex per dose group, 4 weeks old at the beginning of the study) were
exposed over a 2-year period to 0, 25, 100 or 400 mg 3-MCPD/L in drinking water by Cho et al.
(2008b). Average doses of 0, 1.97, 8.27 or 29.50 mg/kg bw per day and 0, 2.68, 10.34 or 37.03 mg/kg
bw per day were calculated by the study authors for males and females, respectively. Animals were
checked daily for clinical signs of discomfort, morbidity and mortality, and body weight, food and water
consumption were recorded on a weekly basis during the exposure period. Histopathology analyses
were performed at the end of the exposure period. The results of the study are reported in detail in
EFSA CONTAM Panel (2016). Focussing on the effects relevant to reproduction, the following
histopathological changes were observed in the male reproductive system: statistically significant
increases in the incidence of seminiferous tubular atrophy and arteritis/periarteritis were reported at
1.97 mg/kg bw per day and above; incidence of epididymal atrophy was observed only at the highest
tested dose; finally increased incidence of Leydig cell tumours was observed at 8.27 mg/kg bw per day,
achieving statistical significance only at 29.5 mg/kg bw per day. Overall, a LOAEL of 1.97 mg/kg bw per
day for reproductive effects can be identified from this study.

Zhang et al. (2012) treated groups of five adult male SD rats (initial bw of 435 � 35 g) with 0, 2.5,
5.0 or 10 mg (S)-3-MCPD/kg bw by daily gavage over 52 days. At the end of the study, sperm motility
and sperm glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, adenosine triphosphate
(ATP) and cyclic adenosine monophosphate (cAMP) levels were reduced at all dose levels including the
lowest dose level, i.e. at 2.5 mg/kg bw. No NOAEL could be identified from this study, and a LOAEL of
2.5 mg/kg bw per day could be derived for adverse effects on sperm function in rats.

A dose–response study of 3-MCPD administered orally for 7 days to adult male Sprague–Dawley
rats (10 weeks of age) was published by Kim et al. (2012). Three treatment groups were chosen 3, 10
or 30 mg 3-MCPD/kg bw per day, based upon previous in vivo mechanistic studies of male antifertility.
(Jelks et al., 2001; Kawaguchi et al., 2004), and the rats killed on the last day of treatment. The study
was focussed upon the epididymal toxicity of 3-MCPD and this tissue was slightly increased in weight
at the end of treatment whereas no effects were seen upon the weights of the testis, seminal vesicle
or prostate. There was no effect on the sperm content of the testis, but there were no data on
epididymal sperm content, making a conclusion difficult regarding a potential effect in sperm numbers
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in this study. Dose-dependent increases in histopathological effects in the epididymal epithelium were
observed starting at the lowest dose.

3.1.2. 3-MCPD fatty acid esters

In a study commissioned by EFSA, the effects of 3-MCPD and 3-MCPD dipalmitate administered
daily by gavage for 90 days to adult Wistar rats of both sexes were studied by Barocelli et al. (2011).
The treatments were equimolar with respect to 3-MCPD (0.267, 0.067 or 0.017 mmol/kg bw per day)
and the primary treatments were: (a) MCPD at 29.5, 7.37 or 1.84 mg/kg bw per day or (b) 3-MCPD
dipalmitate at 156.75, 39.19 or 9.87 mg/kg bw per day. The highest 3-MCPD dose was selected from
the carcinogenicity study of Cho et al. (2008b). The study provided a general clinical toxicological
profile which included some male and female reproductive tissue toxicology but no developmental
parameters. Twenty four hours after the last dose of either 3-MCPD or its dipalmitate ester there were
no significant dose effects on the weights of either the gonads from either sex or male secondary sex
organs. No other reproductive effects were reported in female rats. However, in male rats treated with
the high dose of 3-MCPD dipalmitate (156.75 mg/kg bw per day), some rats showed moderate or total
degeneration of the seminiferous tubules whilst others showed atrophy or necrosis of spermatogenic
cells and Sertoli cells. In rats treated with the intermediate and low dose of 3-MCPD dipalmitate (39.19
and 9.78 mg/kg bw per day), mild degenerative changes of the spermatogenic epithelium were
observed. Similar extensive pathological testis changes, including lymphomononuclear infiltrates in the
epididymis, were seen in rats treated with high doses of 3-MCPD (29.5 mg/kg bw per day). Rats
receiving the intermediate dose, 7.37 mg/kg bw per day of 3-MCPD, showed a mild decrease of
spermatids and increased atrophy of spermatogenic and Sertoli cells in the seminiferous tubules. Low
doses of 3-MCPD (1.84 mg/kg bw per day) caused some degenerative phenomena, with decreased
spermatids density, slight atrophy of supporting cells and spermatogenic cells. Qualitative data were
combined by the authors to give a total testis pathological score, which showed statistically significant
changes only at high doses and effects were three times more severe after administration of 3-MCPD
(29.5 mg/kg bw per day) than after administration of equimolar doses of 3-MCPD dipalmitate. The
NOAEL and LOAELs could not be determined with any confidence using the changes in testicular
pathology scores across the dose range used. The approach of producing total pathological scores in a
complex tissue such as the testis is controversial, especially if the pathological markers do not reflect
the same toxicological lesion, for example combining scores for Leydig cell hyperplasia and
degenerative spermatogenic epithelium (Creasy et al., 2012). Additionally, it fails to take into account
the incidence of a particular lesion within a treatment group, which ranged from being absent to
severe. The CONTAM Panel agreed that the incidence data of a particular pathological change were
more reliable when considering the dose effects of 3-MCPD or its ester. Some difficulties in
interpretation of the scores below the qualitative value of 1 was encountered and resolved with the
authors who provided a more detailed description.1 Using, in particular, the incidence of a histological
fall in testis spermatid/spermatozoa numbers a LOAEL for 3-MCPD could be identified at 1.84 mg/Kg
bw per day, and for 3-MCPD dipalmitate at 9.78 mg/kg bw per day.

Onami et al. (2014) conducted a 13‑week repeated dose study of three 3‑MCPD esters
administered by intragastric intubation to 6-weeks old male (weighing from 98 to 125 g) and female
(from 82 to 104 g) F344 rats. 3-MCPD was used for reference and the esters chosen were 3-MCPD
palmitate diester (CDP), 3-MCPD palmitate monoester (CMP) and 3-MCPD oleate diester (CDO). The
doses used were; 3-MCPD (40 mg/kg bw per day) and the doses for 3-MCPD fatty acid esters were
14, 55 and 220 mg/kg bw per day for CDP, 8, 32 and 130 mg/kg bw per day for CMP and 15, 60 and
240 mg/kg bw per day for CDO. The doses being equimolar MCPD doses of 2.5, 10 and 40 mg/kg bw,
respectively, and chosen with reference to the carcinogenicity of MCPD reported by Cho et al. (2008b).
Treatment was 5 daily doses per week for 13 consecutive weeks. The authors conducted a general
toxicological profile including blood, kidney, testis, liver, and included histopathology and clinical
biochemistry. Testicular focal granuloma, unilateral or bilateral seminiferous tubular atrophy and
aspermatogenesis were observed without clear dose response. In the initial segment of the epididymis,
the sperm maturation and storage tissue, dose-dependent apoptotic cell death was noted, limited to
the columnar epithelium of the initial segment. In rats treated with 3-MCPD and high-dose 3-MCPD
fatty acid esters apoptosis was significantly increased as compared to the vehicle control group. The

1 The following scoring system was indicated by the study authors: 0 within normal limits, 0.5 minimal, 1 slight, 2 moderate, 3
severe (A. Mutti and A. Corradi, personal communication, 2017).
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figures showing histology demonstrated the presence of epididymal sperm. Based on apoptosis in the
epididymal epithelium the NOAELs were estimated to be 55 mg/kg bw per day for CDP, 32 mg/kg bw
per day for CMP and 60 mg/kg bw per day for CDO, equimolar to 10 mg 3-MCPD/kg bw per day. For
comparison, based on changes in absolute and relative kidney weights, NOAELs were 14 mg/kg bw
per day for CDP, 8 mg/kg bw per day for CMP and 15 mg/kg bw per day for CDO, equimolar to
2.5 mg 3-MCPD/kg bw per day in both males and females. The severity of toxicological effects in rats
treated with either CDP, CMP or CDO for 13 weeks were almost equivalent to those with equimolar
3-MCPD.

3.1.3. Conclusions

Most of the animal studies with free 3-MCPD and 3-MCPD esters included in this review were
carried out in rats. With the exclusion of one study using the (S)-3-MCPD (Zhang et al., 2012), all
studies were conducted using racemic 3-MCPD. Various exposure scenarios were tested, with the most
sensitive effect being reduced epididymal sperm motility. Continued and higher exposures affected
epididymis and testis and a range of related fertility parameters. The sperm motility effects were
reversible in a few weeks after cessation of treatment. The available studies in combination lead to an
overall NOAEL of 1 mg/kg bw per day. Vickery et al. (1974), Hoyt et al. (1994) and Ban et al. (1999)
showed a NOAEL of 1 mg/kg, whereas Li et al. (2003) reported a NOAEL of 2 mg/kg bw per day
based on decreased sperm count. Other studies did not provide a NOAEL, the lowest doses tested
representing LOAELs above 1 mg/kg bw per day (Yamada et al., 1995; Mineshima et al., 2000; Kim
et al., 2012; Zhang et al., 2012). 3-MCPD fatty acid esters were tested in Barocelli et al. (2011) and
Onami et al. (2014) and revealed histopathological effects in testis and epididymis at doses corrected
for free-3-MCPD content above the NOAEL for free 3-MCPD.

3.2. Mode of action

The kidney and testis were found to be the main target organs for 3-MCPD-induced toxicity in
animal studies. The molecular mechanisms of the toxic potential of 3-MCPD are not yet fully
understood. Generally, the toxic effects of 3-MCPD in both target tissues were associated with its
oxidative metabolism to b-chlorolactaldehyde and b-chlorolactic acid (Lynch et al., 1998).

Renal toxicity

The inhibition of glycolysis by metabolites associated with the b-chlorolactate pathway was
suggested as possible nephrotoxic mechanism of 3-MCPD. b-Chlorolactaldehyde has been shown to
inhibit the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase and triosephosphate
isomerase (Jones and Porter, 1995). The impairment of the glycolytic pathway and energy production
was supposed to contribute to the kidney damage. Additionally, the accumulation of oxalic acid (the
degradation product of b-chlorolactic acid) in the kidney was also thought to contribute to the kidney
toxicity of 3-MCPD (Jones et al., 1981).

In a metabolomics study in rats exposed to 3-MCPD (30 mg/kg bw per day for 40 days), urine
galactosylglycerol was identified as a possible early biomarker for the effects of 3-MCPD exposure. The
authors suggested that 3-MCPD disrupts the homoeostasis of the lysosomal enzyme b-galactosidase in
kidney, leading to decreased hydrolysis of galactosylglycerol to galactose and glycerol and elevation of
galactosylglycerol in the urine (Li et al., 2010).

To further get insight into the molecular mechanisms of 3-MCPD toxicity, a 28-day oral toxicity
study was conducted with rats. Animals were treated with either 3-MCPD (10 mg/kg bw) or an
equimolar dose of or its dipalmitate ester. Alterations induced by 3-MCPD and its dipalmitate ester
were characterised by two-dimensional gel-based proteomics analysis of liver, kidney and testis of the
animals. This revealed an increased expression of the alcohol dehydrogenase (the enzyme postulated
to be involved in the oxidative metabolism of 3-MCPD) as well as a downregulation of several glycolytic
enzymes (e.g. triosephosphate isomerase, which has previously been shown to be inhibited by
b-chlorolactaldehyde) in 3-MCPD and 3-MCPD dipalmitate treated animals. Furthermore, the cellular
antioxidant protein DJ-1 was one of the most deregulated proteins in kidney, as well as in liver and
testis of rats treated with 3-MCPD or its dipalmitate ester (Braeuning et al., 2015; Sawada et al., 2015,
2016). In a recent mechanistic study investigating the molecular effects of 3-MCPD on DJ-1, it was
shown that the observed substance-induced deregulation of DJ-1 was due to a post-translational
modification, a 3-MCPD-mediated oxidation of a conserved, redox-sensitive cysteine residue of the
DJ-1 protein (Buhrke et al., 2017).
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Male reproductive toxicity

3-MCPD is considered to cause male reproductive toxicity at least partly through the inhibition of
glycolysis enzymes by its metabolites with energy depletion as result (Ford and Waites, 1982; Jones,
1983; Kwack et al., 2004). The activity of all glycolytic enzymes in the epididymal and testicular
tissue of rats was reduced following daily subcutaneous injections of 6.5 mg/kg bw 3-MCPD for 9 days
(Kaur and Guraya, 1981). The inhibition of the glycolytic enzymes glyceraldehyde-3-phosphate
dehydrogenase and triosephosphate isomerase by the 3-MCPD metabolite b-chlorolactaldehyde, was
suggested as possible mechanism (Jones and Porter, 1995; Lynch et al., 1998).

Significantly decreased levels of total RNA and protein contents were observed in the testis and
epididymis of rats that received 6.5 mg/kg bw 3-MCPD per day for 9 days. These changes were
paralleled by increases in the concentrations of proteinase and ribonuclease, whereas the DNA content
was unchanged (Kaur and Guraya, 1981). The spermatotoxic effect of 3-MCPD were also suggested to
be mediated by reduction of H+-ATPase expression and subsequent alteration of the pH level in the
cauda epididymis, leading to a disruption of sperm maturation and acquisition of motility (Kwack et al.,
2004). 3-MCPD inhibited progesterone production in R2C rat Leydig cells in a time- and dose-
dependent inhibitory manner. Disruption of progesterone production induced by 3-MCPD was
considered to be potentially related to the inhibition of the cAMP signal transduction cascade. Authors
supposed that reduced cAMP levels interfere with the male steroidogenic capacity (Sun et al., 2013).

A comparative proteomic analysis, based on a 28-day oral toxicity study in male Wistar rats treated
with 3-MCPD or equimolar 3-MCPD dipalmitate dose (see above) revealed a deregulation of several
proteins associated to lipid metabolism, reproductive system disease and cancer in testes of treatment
groups. Similarly to the kidney, the cellular antioxidant protein DJ-1 was identified to be one of the
most deregulated proteins in testes of all treated animals (Sawada et al., 2015). At the molecular level,
reactive oxygen species (ROS) formation with subsequent oxidation of the redox-sensitive cysteine
residue of the DJ-1 protein was suggested to be involved in the development of 3-MCPD-mediated
toxicity (Buhrke et al., 2017).

In summary, a general picture emerges in which 3-MCPD, after metabolism, inhibits glycolytic
enzymes and causes oxidative stress, leading to the toxicological manifestations observed in kidney
and male reproductive system.

3.3. Identification of critical effects and dose–response assessment

3.3.1. Renal effects

3.3.1.1. Updated BMD analysis

The CONTAM Panel confirmed the kidney to be one of the main target organs of 3-MCPD. The
dose–response analysis of different renal effects observed in long-term toxicity studies on oral
exposure to 3-MCPD in rats indicated the increased incidence of kidney tubular cell hyperplasia as the
most relevant effect for the performance of dose–response analysis (EFSA CONTAM Panel, 2016 and
FAO/WHO, 2017).

The CONTAM Panel reviewed the BMD modelling of tubular cell hyperplasia applying the new guidance
on the use of BMD in risk assessment (EFSA Scientific Committee, 2017), in which the use of additional
parameter constraints is not recommended. This resulted in the BMD confidence intervals reported in
Table 1. The full details of the newly performed BMD modelling are reported in Appendices A–D.

Table 1: Benchmark dose (BMD) modelling of incidence of renal tubular cell hyperplasia in rats
using the new EFSA guidance on BMD (EFSA Scientific Committee, 2017)

Study Sex
Overall BMDL10–BMDU10

(a)

(mg/kg bw per day)
BMDL10–BMDU10 (BMD10) applying

model averaging(b) (mg/kg bw per day)

Sunahara et al. (1993) M 0.22–4.23 0.54–4.91 (1.47)

F 0.29–3.26 0.55–3.70 (1.15)
Cho et al. (2008b) M 0.08–1.96 0.20–1.95 (0.68)

F 17.0–37.3 21–36 (28)

M: males; F: females; bw: body weight.
(a): Lowest BMDL10–highest BMDU10 across acceptable models using the Akaike information criterion (AIC) method.
(b): Model averaging calculated using the Wheeler and Bailer (2008) software.
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The CONTAM Panel noted that the modelling of tubular cell hyperplasia for male SD rats of the Cho
et al. (2008b) study and male and female F344 rats from the Sunahara et al. (1993) study give
consistent results and could in principle used in a combined modelling, as already shown by Rietjens
et al. (2012). However, female SD rats appears to be far less sensitive to the renal effects of 3-MCPD.
As the possible biochemical reasons for this difference are unknown, the combined modelling of the
data sets from the two studies was not considered as justified (data not shown).

Overall, the CONTAM Panel concluded that the model average BMDL10–BMDU10 interval of 0.20–
1.95 mg/kg bw per day calculated for the incidence of tubular cell hyperplasia in male SD rats from
the Cho et al. (2008b) study provides an adequate RP of 0.20 mg/kg bw per day for the renal effects
of 3-MCPD and molar equivalents of 3-MCPD fatty acid esters.

3.3.1.2. Assessment of the identified EFSA-JECFA divergence on BMD analysis

Methodological differences in the performance of the BMD modelling of data sets on tubular cell
hyperplasia from the Sunahara et al. (1993) and Cho et al. (2008b) studies led to the selection of
different reference points by the CONTAM Panel (EFSA CONTAM Panel, 2016) and JECFA (FAO/WHO,
2017). The CONTAM Panel applied models allowing for additional parameter constraints both with and
without the default restrictions as available in the US Environmental Protection Agency BMDS software
and selected the lowest acceptable BMDL10 using the criteria outlined in the previous opinion of the
EFSA Scientific Committee on the use of BMD (EFSA, 2009). JECFA applied default restrictions to
models allowing for additional parameter constraints and selected the lowest BMDL10 from acceptable
models (i.e. non-statistically different from the full model using the likelihood ratio (p > 0.1)). In
addition, JECFA compared the selected BMDL10 with the model averaging estimates using, the
software of Wheeler and Bailer (2008) applied to ‘all models, except the quantal-quadratic’ (FAO/WHO,
2017). The outcome of the different modelling approaches are summarised in Table 2.

In the updated BMD analysis described in Section 3.3.1.1, the CONTAM Panel applied the Scientific
Committee updated guidance on the use of BMD in risk assessment (EFSA Scientific Committee, 2017),
and derived BMDL10 using model averaging, based on a set of models recommended by the guidance
and excluding additional parameter constraints (see Table 1). Also, this analysis resulted in somewhat
different values from those obtained by JECFA, as can be observed by comparing the BMDL10 and
BMD10 derived using model averaging in Tables 1 and 2. The different outcome of the BMD analyses
was mainly due to the different views of the two organisations regarding the use of additional
parameter constraints, and probably to some extent also to the different sets of BMD models applied.
The BMDLs calculated by JECFA are within the BMDL–BMDU intervals calculated by EFSA using model
averaging, suggesting a minor divergence from a scientific point of view.

Table 2: Comparison of the results obtained from the BMD modelling of the incidence of renal
tubular cell hyperplasia in rats by EFSA (EFSA CONTAM Panel, 2016) and JECFA
(FAO/WHO, 2017)

Study Sex
EFSA selected
BMDL10–BMD10

(mg/kg bw per day)(a)

JECFA selected
BMDL10–BMD10

(mg/kg bw per day)(d)

JECFA BMDL10–BMD10

applying model averaging
(mg/kg bw per day)(d)

Sunahara et al.
(1993)

M 0.22–1.20(b) 1.08–1.64(e) 1.74–2.47

F 0.29–0.83(b) 1.30–1.89(e) 1.60–1.96
Cho et al.
(2008b)

M 0.077–0.54(b) 0.87–1.21(e) 0.89–1.29

F 14–27(c) 14.4–23.5(e) 20.4–28.0

M: males; F: females; bw: body weight.
(a): EFSA selected the lowest BMDL10 using the statistical criteria outlined in EFSA (2009), using models both with and without

additional parameter constraints.
(b): Gamma (unrestricted).
(c): Quantal-linear.
(d): JECFA applied additional parameter constraints to models allowing for them, and selected the lowest acceptable BMDL10.

In addition JECFA performed BMD analysis using the Wheeler and Bailer (2008) software for model averaging, only for
comparison purposes.

(e): Log-logistic (restricted).
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3.3.2. Reproductive effects

Effects on male fertility

The CONTAM Panel reviewed available dose–response data on male fertility parameters. As noted
previously, 3-MCPD can induce a range of effects in the male reproductive system. Most of the
selected studies indicated the decreased sperm motility as the main effect caused by repeated
exposure to 3-MCPD. Sperm motility was assessed using different methods, e.g. manual motility
scoring, computer-assisted sperm analysis (CASA) or automated Sperm Quality Analyzer (SQA).
Differences were noted also in the experimental protocols applied in different studies, including
exposure duration and sperm sampling and incubation procedures. Mineshima et al. (2000) showed
that different test methods and incubation protocols may influence the outcome of the experiment.
Decreased sperm count was also identified as a possible endpoint for the dose–response assessment
of the effects of 3-MCPD on male fertility. However, an inconsistent trend was observed in the results
on sperm count reported in different studies. 3-MCPD seems to have minor effects on sperm count
following short-term exposure (2 weeks or less) at doses up to 10–30 mg/kg bw per day. However,
exposure of rats for 13 weeks resulted in a dose-dependent decreasing trend of epididymal sperm
count, reaching statistical significance at ≥ 4 mg/kg bw per day (Li et al., 2003). Finally,
histopathological analysis revealed changes in the male reproductive system, in particular in epididymis
and seminiferous tubules, in some cases associated to the observed decrease in epididymal sperm
count (see e.g. Li et al., 2003; Barocelli et al., 2011; Kim et al., 2012).

Sperm motility

A decrease in the percentage of motile sperm and sperm motility parameters was observed in
several independent studies in rats (mainly Sprague–Dawley) exposed for 1–2 weeks to 3-MCPD doses
ranging from 1 to 30 mg/kg bw per day. The application of different experimental procedures and
techniques to measure the fraction of motile sperm resulted in a considerable variability in the
outcome of the studies. The CONTAM Panel decided to limit the dose–response analysis to studies in
which automated sperm analysis (CASA) was deployed, because a standardised technique was
considered less subject to experimental bias. Out of the three studies using CASA identified in the
literature search (Hoyt et al., 1994; Ban et al., 1999, 2001), the one from Ban et al. (1999) was
selected for BMD analysis due to the higher statistical power of the study. In this study, a dose-related
decline in percentage of motile sperm was observed, with concurrent decreases in a series of sperm
motility parameters, including curvilinear velocity (VCL), amplitude of lateral head displacement (ALH)
and radius of circular cells. VCL and ALH were the most sensitive parameters associated with
decreased sperm motility. The Panel selected VCL for BMD modelling, since it is a key parameter to
predict human male subfertility (e.g. Larsen et al., 2000; Youn et al., 2011).

BMD modelling resulted in a BMDL05–BMDU05 confidence interval of 0.44–3.88 mg/kg bw per day.
The details of the BMD analysis are reported in Appendix F.

Epididymal sperm count

A statistically significant decrease in epididymal sperm count was reported in a 13-week study (Li
et al., 2003). The CONTAM Panel noted a substantial variability in the data (standard deviations
ranging from 20% to more than 50% of the mean levels through the control and treatment groups),
which is not unexpected for this type of data (see e.g. Zenick and Clegg, 1986). Furthermore, it is
known that male rat fertility is not affected by small changes in sperm count and successful fertilisation
occurs even in the presence of 90% depletion of sperm reserves (see e.g. Mangelsdorf et al., 2003;
Perobelli et al., 2012). Overall, the CONTAM Panel did not consider the default benchmark response
(BMR) of 5%, recommended by the EFSA guidance, as a relevant effect size for this parameter in rats
and a higher BMR was justified from a biological point of view. The CONTAM Panel decided to apply
one standard deviation of the control group (equivalent to an effect size of 23%) as recommended by
US EPA (2012). The BMD modelling of epididymal sperm counts resulted in a BMDL23–BMDU23 interval
of 1.34–4.25 mg 3-MCPD/kg bw per day (details of the BMD analysis reported in Appendix I). The
BMDL23 of 1.34 mg 3-MCPD/kg bw per day was selected as reference point for the decrease in rat
sperm count.

The details of the BMD analysis for this endpoint are reported in Appendix G.
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Histopathological changes

Dose-dependent decrease in number of spermatids and increased atrophy of spermatogenic cells
and Sertoli cells were observed in rats exposed to 1.84 mg 3-MCPD/kg bw per day and above in a
subchronic study, and similar effects were observed in rats exposed to 3-MCPD dipalmitate, starting at
higher 3-MCPD equivalent doses (Barocelli et al., 2011). In view of the uncertainties in the reported
data discussed in Section 3.1.2, no quantitative dose–response analysis could be performed on this
data set. Increased incidence of seminiferous tubular atrophy was also reported by Cho et al. (2008b)
in rats exposed to ≥ 2 mg/kg bw per day for two consecutive years. Increased incidence of
vacuolisation of the epididymal epithelium was observed at 3 mg 3-MCPD/kg bw per day and above by
Kim et al. (2012). BMD analysis of the data sets from Cho et al. (2008b) and Kim et al. (2012) was
carried out applying model averaging and resulted in BMDL10–BMDU10 confidence intervals of
1.55–14.4 mg 3-MCPD/kg bw per day for the chronic increased incidence in seminiferous tubular
atrophy, and 1.34–8.50 mg 3-MCPD/kg bw per day for the increased vacuolisation of the epididymal
epithelium.

The details of the BMD analyses for the histopathological changes are reported in Appendices H
and I.

3.4. Derivation of health-based guidance values

The selected BMDL–BMDU intervals (in mg/kg bw per day) for the identified renal and fertility
effects of 3-MCPD are shown in Figure 2. In accordance with the previous opinions by the CONTAM
Panel (EFSA CONTAM Panel, 2016) and JECFA (FAO/WHO, 2017), tubular hyperplasia in kidneys of rats
was reconfirmed as the critical effect. A BMDL10–BMDU10 interval of 0.20–1.95 mg 3-MCPD/kg bw per
day was obtained using model averaging of data from male SD rats from the study by Cho et al.
(2008b).

Several parameters relating to male fertility were affected at 3-MCPD doses around 1 mg/kg bw per
day. Sperm motility was the most sensitive effects on the male reproductive system in rats. BMD
analysis of the VCL from the data set by Ban et al. (1999) in SD rats, resulted in a BMDL05–BMDU05

interval of 0.44–3.88 mg/kg bw per day. Because of the large variance in epididymal sperm count
data, a BMR of 23%, equalling one standard deviation of the control group, was used for this
parameter. Applying this approach to BMD modelling of data from SD rats from a 90-day study by Li
et al. (2003) resulted in a BMDL23–BMDU23 interval of 1.34–4.25 mg 3-MCPD/kg bw per day. As
discussed in Section 3.3.2, such a decrease in sperm count is not expected to have any effect on rat
fertility). The effect on sperm count was supported by increased incidence of histopathological changes
in epididymis and seminiferous tubules occurring at similar doses.

The terms of reference stipulated assessment of data on developmental effects of 3-MCPD and its
fatty acid esters. No data on developmental effects were identified in the literature search performed in
this opinion. In the previous opinion (EFSA CONTAM Panel, 2016), a single study was identified in which
pregnant SD rats were exposed to 0, 5, 10 or 25 mg 3-MCPD/kg bw per day from gestational days 11.5 to
18.5 (El Ramy et al., 2006). No fetal toxicity, macroscopic malformations, histopathological changes in
the testis, or reduced bw were observed in fetuses from any of the treatment groups. Although the study
has some limitations (the exposure period did not cover the whole organogenesis and histopathology was
confined to the testis), it does not suggest a concern towards possible developmental effects of 3-MCPD
at doses at which renal and male fertility effects are observed.

Although effects on kidney and male reproductive system start to appear at similar doses, the RP
for renal tubule cell hyperplasia was the lowest (0.20 mg/kg bw per day). This RP would correspond to
less than 10% in reduction of epididymal sperm count and less than 5% in reduction of sperm motility.
It is therefore considered to be protective also for effects on the male reproductive system and was
selected as the critical effect caused by chronic exposure to 3-MCPD and its fatty acid esters. As
discussed in the previous EFSA opinion on 3-MCPD and its esters, sustained hyperplasia might lead to
cancer by a non-genotoxic action (EFSA CONTAM Panel, 2016). Therefore, taking into account the key
event, i.e. renal cell hyperplasia, is considered to cover any 3-MCPD-related additional cancer risk as
well. For the protection of human health from adverse effects of 3-MCPD, the CONTAM Panel applied
an overall uncertainty factor of 100 to the selected reference point (0.20 mg/kg bw per day) to
account for intraspecies and interspecies differences and derived an updated group TDI of 2 lg/kg bw
per day for 3-MCPD and its fatty acid esters (expressed as MCPD equivalents).
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3.5. Risk characterisation

In the previous opinion of the EFSA CONTAM Panel (2016), dietary exposure assessment to
3-MCPD and its esters was performed considering exposure levels to the parent compound, regardless
of the original form. The mean and high (P95) chronic dietary exposure estimates were higher for the
younger age groups (infants, toddlers and children up to 10 years of age) in comparison to
adolescents and to the adult age groups. Mean exposure levels (reported as minimum lower bound-
maximum upper bound) ranged from 0.5 to 1.5 lg 3-MCPD/kg bw per day across the dietary surveys
for the younger age groups, and from 0.2 to 0.7 lg 3-MCPD/kg bw per day in the adolescents and
adult age groups. High exposure levels ranged from 1.1 to 2.6 lg 3-MCPD/kg bw per day in the
younger age groups, and from 0.3 to 1.3 lg 3-MCPD/kg bw per day in adolescents and adults age
groups. Specific scenarios were considered for infants receiving formula only, based on mean and P95
occurrence of 3-MCPD in these products. The respective exposure estimates were 2.4 and 3.2 lg 3-
MCPD/kg bw per day.

The CONTAM Panel noted that the TDI of 2 lg/kg bw per day is not exceeded in the adult
population (mean and high exposure levels). A slight exceedance of the TDI was observed in the high
consumers of the younger age groups and in particular for the scenarios on infants receiving formula
only.

3.6. Uncertainty analysis

Regarding the exposure assessment, the CONTAM Panel confirmed the uncertainties already
identified in its 2016 opinion (EFSA CONTAM Panel, 2016). Additional uncertainties were identified in
the hazard characterisation of 3-MCPD in particular related to its effect on male reproductive system. A
lack of data on the developmental and neurodevelopmental effects of 3-MCPD was noted, in particular
in infants and juveniles (ex utero development). In addition, existing chronic studies did not cover
adequately male reproductive toxicity and fertility parameters; therefore there is uncertainty on the
long-term effects of 3-MCPD on these endpoints.

mg 3-MCPD/kg bw per day

Kidney tubular hyperplasia
(chronic, 10%)

Decreased sperm motility (VCL)
(subacute, 5%)

Decreased sperm count
(subchronic, 23%)

Epididymal epithelium vacuolization
(subacute, 10%)

Seminiferous tubular atrophy
(chronic, 10%)

Exposure duration and selected BMR are reported in brackets.

Figure 2: Comparison of selected BMDL–BMDU intervals (in mg/kg bw per day) for the identified key
renal and fertility effects of 3-MCPD
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In Table 3, a summary of the uncertainty evaluation for 3-MCPD, considering both the main
uncertainties identified in the previous and present opinions, is presented. It highlights the main
sources of uncertainty and indicates an estimate of whether the respective source of uncertainty might
have led to an over- or underestimation of the exposure or the resulting risk.

The exposure assessment most likely underestimated the exposure. Overall, the CONTAM
Panel concluded that the impact of the uncertainties on the risk assessment is high.

4. Conclusions

• 3-MCPD induced a dose-dependent reduction in sperm motility, which was associated with a
reduced ability to fertilise oocytes. This was reflected in a fall in fecundity measured by
reduced litter size and eventually complete infertility. There was no effect on mating behaviour,
and in general the weight of reproductive tissues was not changed.

• Effects on sperm motility could be seen in rats shortly after the start of daily treatment above
1 mg 3-MCPD/kg bw per day, and were completely reversed 2–4 weeks after treatment
cessation.

• In the short term, there was no effect on spermatogenesis or sperm number at doses lower
than 10 mg 3-MCPD/kg bw per day, but more prolonged treatment in rats below this dose was
occasionally associated with reduction in sperm count and pathological changes in the testis
and epididymis.

• Equimolar doses of fatty acid esters of 3-MCPD and free 3-MCPD produce similar effects.
• The updated guidance of the EFSA Scientific Committee on the use of BMD in risk assessment

was used for the dose–response analyses for renal and male fertility effects. The resulting
BMDLs indicated that oral exposure to 3-MCPD affects kidney and the male reproductive
system at a similar dose range.

• Sperm motility (VCL) was reduced following 1–2 weeks of oral exposure to 3-MCPD with a
BMDL05-BMDU05 interval of 0.44–3.88 mg/kg bw per day.

• Because of large variance in epididymal sperm counts, a benchmark dose response of 23%,
equal to one standard deviation of the control group, was selected for this parameter. The
BMDL23–BMDU23 interval for decrease in epididymal sperm count was 1.34–4.25 mg 3-MCPD/
kg bw per day.

• Reduction in sperm count was supported by histological effects on epididymis and testes
occurring at similar doses as those affecting sperm numbers.

• Renal tubular cell hyperplasia was reconfirmed as the critical effect in rats during chronic oral
exposure to 3-MCPD with a BMDL10–BMDU10 interval of 0.20–1.95 mg/kg bw per day using
model averaging. The BMDL10 derived using model averaging was about twofolds higher than
the one derived in the previous EFSA opinion (0.08 mg/kg bw per day).

Table 3: Summary of qualitative evaluation of the impact of uncertainties on the risk assessment of
the dietary exposure to 3-MCPD identified in the present opinion and in the EFSA CONTAM
Panel (2016) opinion

Sources of uncertainty Direction(a)

Data from few sources and from a limited number of samples +/�
For some food groups not represented in the analytical data set occurrence data were imputed
using a model

+/�

Missing occurrence data on some food groups �
Data on only one form (free or ester-bound) of 3-MCPD in samples that may contain both forms �
Use of occurrence data from a specific food group for a broader food group +/�
Consumption data from few dietary surveys +/�
Extent of hydrolysis of esterified forms of 3-MCPD +

Extrapolation from animal data for human risk assessment +/–
Conversion of glycidol to 3-MCPD may occur +/�
Lack of data on toxicity in infants and juveniles especially male ex utero development �
Lack of appropriate studies on long-term effects of 3-MCPD on male fertility �
(a): +: uncertainty with potential to cause overestimation of exposure/risk; �: uncertainty with potential to cause

underestimation of exposure/risk.
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• The different outcome of the BMD analyses between JECFA and EFSA using the same data
sets on male rat kidney hyperplasia was due to the initial selection of models and parameter
constraints applied.

• The CONTAM Panel applied an overall uncertainty factor of 100 to the selected reference point
(renal tubular cell hyperplasia; 0.20 mg/kg bw per day) to account for intraspecies and
interspecies differences and derived an updated group TDI of 2 lg/kg bw per day for 3-MCPD
and its fatty acid esters (expressed as MCPD equivalents).

• Mean chronic dietary exposure levels (reported as minimum lower bound–maximum upper
bound) estimated for 3-MCPD and its fatty acid esters in the previous opinion of the EFSA
CONTAM Panel of 2016 ranged from 0.5 to 1.5 lg 3-MCPD/kg bw per day across the dietary
surveys for the younger age groups, and from 0.2 to 0.7 lg 3-MCPD/kg bw per day in the
adolescents and adult age groups. High (P95) exposure levels ranged from 1.1 to 2.6 lg 3-
MCPD/kg bw per day in the younger age groups, and from 0.3 to 1.3 lg 3-MCPD/kg bw per
day in adolescents and adults age groups. Exposure levels of 2.4 and 3.2 lg 3-MCPD/kg bw
per day were estimated in specific scenarios for infants receiving formula only, based on mean
and P95 occurrence of 3-MCPD in this products, respectively.

• The CONTAM Panel noted that the established TDI of 2 lg/kg bw per day is not exceeded in
the adult population (mean and high exposure levels). A slight exceedance of the TDI was
observed in the high consumers of the younger age groups and in particular for the scenarios
on infants receiving formula only.

5. Recommendations

• In vitro studies should be carried out on the comparison of adverse effects of 3-MCPD on
human and rat sperm.

• Human pharmacokinetics studies should be performed for 3-MCPD and its esters, in particular
multiple doses across a substantial time frame.

• Human data to confirm the possible effects of 3-MCPD should be generated, by developing
reliable biomarkers of exposure and effects, and conducting epidemiological studies both in the
general population and in susceptible population subgroups (e.g. to look for association
between low male fertility and high intake of 3-MCPD).

• More data should be generated on fertility effects following long-term exposure to 3-MCPD,
and on developmental, neurodevelopmental and juvenile toxicity.
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3-MCPD 3-monochloropropane-1,2-diol
AIC Akaike information criterion
ALH amplitude of lateral head displacement
ATP adenosine triphosphate
BMD benchmark dose
BMDL benchmark dose lower confidence limit
BMR benchmark response
BMDU benchmark dose upper confidence limit
bw body weight
cAMP cyclic adenosine monophosphate
CDO 3-MCPD oleate diester
CDP 3-MCPD palmitate diester
CMP 3-MCPD palmitate monoester
CASA computer-assisted sperm analysis
CONTAM EFSA Panel on Contaminants in the Food Chain
EPA Environmental Protection Agency
F Female
FAO Food and Agriculture Organization of the United Nations
GAPDH glyceraldehyde-3-phosphate dehydrogenase
JECFA Joint FAO/WHO Expert Committee on Food Additives
LDH lactate dehydrogenase
LOAEL lowest-observed-adverse-effect level
M male
MOE Margin of Exposure
NOAEL no-observed-adverse-effect level
ROS reactive oxygen species
RP Reference Point
SD standard deviation
SE standard error
SQA Sperm Quality Analyzer
TDI tolerable daily intake
TORs Terms of Reference
VCL curvilinear velocity
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Appendix A – Studies selected for full text appraisal

Reference
Species,
strain

Compound(s) and
exposure protocol
(duration, recovery,
regime, number of
animals, timing)

Sex Doses tested
Developmental
and reproductive
endpoints

NOAEL LOAEL Comments

Studies selected for risk assessment
Ban et al.
(1999)

Rat,
Sprague–
Dawley
Crj:CD

3-MCPD, 9 days,
gavage, 14–15
animals/dose group,
1/day

M 0, 1, 3 or 10 mg/kg
bw

Reproductive
organs weight;
Epididymis sperm
motility parameters
and count; Fertility
Pre/post-
implantation loss;
Fetal viability

1 mg/kg bw per
day (sperm
motility, fertility)

3 mg/kg bw per
day (sperm
motility, fertility)

Data also included in Ban
et al. (2001)

Ban et al.
(2001)

Rat,
Sprague–
Dawley
Crj:CD

3-MCPD, 9–28 days
exposure (w/or w/o
3–28 days recovery),
gavage, 14–15
animals/dose group,
1/day or single dose

M Range: 1–16 mg/kg
bw

Reproductive
organs weight;
Sperm count and
motility; Fertility

1 mg/kg bw per
day (sperm
motility, fertility)

3 mg/kg bw per
day (sperm
motility, fertility)

Collaborative study,
include data from Ban
et al. (1999) and Kaneto
et al. (1999)

Barocelli et al.
(2011)

Rat, Wistar 3-MCPD or 3-MCPD
dipalmitate, 90 days,
gavage, 10–20
animals/sex per dose
group, 1/day

M, F 3-MCPD: 1.84, 7.37
or 29.5 mg/kg bw

3-MCPD
dipalmitate: 9.87,
39.19 or
156.75 mg/kg bw
(equimolar to 1.84,
7.37 and 29.5 mg/
kg bw of free 3-
MCPD, respectively)

Reproductive
organs
histopathology

3-MCPD: –

3-MCPD
dipalmitate:
39.19 (testis
histopathology)

3-MCPD: 1.84
(testis
histopathology)

3-MCPD
dipalmitate:
156.75 (testis
histopathology)

Minor limitations of the
study included a low
concentration of 3-MCPD
in the rat food and corn
oil administration vehicle
(over 1,000-fold less than
the lowest dose of 3-
MCPD); timeframes of
administration of the
different compounds and
doses were staggered,
although each phase had
its own concurrent control
group
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Reference
Species,
strain

Compound(s) and
exposure protocol
(duration, recovery,
regime, number of
animals, timing)

Sex Doses tested
Developmental
and reproductive
endpoints

NOAEL LOAEL Comments

Cho et al.
(2008a)

Mouse,
B6C3F1

3-MCPD, 13 weeks,
diet (drinking water),
10 animals/sex per
dose group, ad libitum

M, F M: 0.94, 4.59,
18.05, 36.97 or
76.79 mg/kg bw
per day
F: 0.79, 3.94,
15.02, 30.23 or
61.34 mg/kg bw
per day

Reproductive
organs weight and
histopathology;
Cauda epididymis
sperm motility;
Vaginal cytology

36.97 mg/kg bw
(sperm motility)

4.59 mg/kg bw
(germinal
epithelium
degeneration)

76.79 mg/kg bw
(sperm motility)

18.05 mg/kg bw
(germinal
epithelium
degeneration)

Cho et al.
(2008b)

Rat,
Sprague–
Dawley

3-MCPD, 2 years, diet
(drinking water), 50
animals/sex/per dose
group, ad libitum

M, F M: 1.97, 8.27 or
29.50 mg/kg bw
per day

F: 2.68, 10.34 or
37.03 mg/kg bw
per day

Reproductive
organs
histopathology

8.27 mg/kg bw
(epididymal
atrophy)

1.97 mg/kg bw
(seminiferous
tubular atrophy
and arteritis/
periarteritis)

29.50 mg/kg bw
(epididymal
atrophy)

Hoyt et al.
(1994)

Rat,
Sprague–
Dawley

3-MCPD, 2 weeks (w/or
w/o 2 weeks recovery),
gavage, 10 animals/
dose group, 1/day

M Fertility
was
studies
mating
treated
with
untreated
F

0, 1, 5 or
25 mg/kg bw

Reproductive
organs weight and
histopathology;
Cauda epididymis
sperm count
morphology and
motility; Fertility

1 mg/kg bw
(sperm motility,
decreased
fertility)

5 mg/kg bw
(sperm motility,
decreased
fertility)

Kim et al.
(2012)

Rat,
Sprague–
Dawley

3-MCPD, 7 days,
gavage, 6 animals/dose
group, 1/day

M 0, 3, 10 or
30 mg/kg bw

Reproductive
organs weight and
histopathology;
testis sperm count;
Cauda epididymis
sperm motility and
morphology;
Epididymis enzyme
levels

– 3 mg/kg bw
per day
(vacuolisation
of epididymal
epithelium)

Update on 3-MCPD and its fatty acid esters

www.efsa.europa.eu/efsajournal 25 EFSA Journal 2018;16(1):5083



Reference
Species,
strain

Compound(s) and
exposure protocol
(duration, recovery,
regime, number of
animals, timing)

Sex Doses tested
Developmental
and reproductive
endpoints

NOAEL LOAEL Comments

Li et al. (2003) Rat,
Sprague–
Dawley

3-MCPD, 90 days,
gavage, 22 animals/
dose group, 1/day

M 0.25, 0.5, 1.0, 2.0,
4.0, 8.0 or
16.0 mg/kg bw

Reproductive
organs weight and
histopathology;
Epididymis sperm
count, viability and
morphology;
Testicular enzymes
(LDH, LDH-X) levels

2.0 mg/kg bw
per day (sperm
count)

4.0 mg/kg bw
per day (sperm
viability)

4.0 mg/kg bw
per day (sperm
count)

8.0 mg/kg bw
per day (sperm
viability)

Mineshima
et al. (2000)

Rat,
Sprague–
Dawley
Crj:CD
(mostly)

3-MCPD, 1–2 weeks,
gavage, 4–10 animals/
dose group, 1/day

M 2.5, 5.0 or
10.0 mg/kg bw

Cauda epididymis/
testis sperm
motility, count and
morphology;
Fertility

– 2.5 mg/kg bw
(sperm motility
and fertility)

Study designed as a
multilaboratory
comparison of different
methods for sperm
motility assessment. Data
presentation other than
for motility is very limited

Onami et al.
(2014)

Rat, F344 3-MCPD, 3-MCPD
palmitate diester
(CDP), 3-MCPD
palmitate monoester
(CMP) or 3-MCPD
oleate diester (CDO),
13 weeks, gavage, 10
animals/sex per dose
group, 1/day

F, M 3-MCPD: 40 mg/kg
bw
CDP: 14, 55 or
220 mg/kg bw*
CMP: 8, 32 or
130 mg/kg bw*
CDO: 15, 60 or 240
mg/kg bw*
(common control
group included)
*Doses equimolar
to 2.5, 10.0 and
40.0 mg/kg bw of
free 3-MCPD,
respectively

Reproductive
organs weight and
histopathology

CDP: 55 mg/kg
bw per day
CMP: 32 mg/kg
bw per day
CDO: 60 mg/kg
bw per day
(apoptosis in
epididymal
epithelium)

CDP: 220 mg/kg
bw per day
CMP: 130 mg/kg
bw per day
CDO: 240 mg/kg
bw per day
(apoptosis in
epididymal
epithelium)
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Reference
Species,
strain

Compound(s) and
exposure protocol
(duration, recovery,
regime, number of
animals, timing)

Sex Doses tested
Developmental
and reproductive
endpoints

NOAEL LOAEL Comments

Takayama
et al. (1995)

Rat,
Sprague–
Dawley

3-MCPD, 2 weeks,
gavage, 7 animals/dose
group, 1/day

M 0, 2 or 8 mg/kg bw Reproductive
organs weight and
histopathology;
Sperm motility,
activity and
viability; Fertility

2.0 mg/kg bw
per day (fertility)

2.0 mg/kg bw
per day (sperm
motility)
8.0 mg/kg bw
per day (fertility)

Lack of details in the
study report (e.g. age
and bw of animals at the
beginning of the study,
SD or SE not reported)

Vickery et al.
(1974)

Rat,
Sprague–
Dawley

Exp.1 = 3-MCPD,
3 weeks, gavage, 5
animals/dose group,
1/day

Exp.2 = 3-MCPD, 9
days, gavage, 5
animals/dose group,
1/day

Exp.3 = 3-MCPD,
4 months + 20 days
recovery, gavage, 5
animals/dose group,
1/day

M Exp.1/3 = 0.2, 1.0,
2.5, 5.0, 10 or
25 mg/kg bw

Exp.2 = 1.25, 2.5,
5 or 10 mg/kg bw

Reproductive
organs
histopathology;
Sperm count
(uterine, after
mating); Fertility

Exp. 1: 1.0 mg/
kg bw per day
(decreased
pregnancy rate)

Exp. 1: 2.5 mg/kg
bw per day
(decreased
pregnancy rate)

Exp. 2:
1.25 mg/kg bw
per day (recovery
of uterine fertilised
eggs)

Fertility was studied in
unexposed females mated
with exposed males.
Sperm was only collected
from uterus and oviduct
of unexposed females
following mating

Yamada et al.
(1995)

Rat,
Sprague–
Dawley
Crj:CD

3-MCPD, 4 weeks (w/or
w/o 2 weeks recovery),
gavage, 7–12 animals/
dose group, 1/day

M 0, 2 or 8 mg/kg bw Reproductive
organs weight and
histopathology;
Cauda epididymis
sperm motility,
count and
morphology;
Fertility; Post-
implantation loss;
Foetal viability and
weight

2.0 mg/kg bw
per day (sperm
motility and
decreased
fertility)
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Reference
Species,
strain

Compound(s) and
exposure protocol
(duration, recovery,
regime, number of
animals, timing)

Sex Doses tested
Developmental
and reproductive
endpoints

NOAEL LOAEL Comments

Zhang et al.
(2012)

Rat,
Sprague–
Dawley

(S)-3-MCPD, 52 days,
gavage, 5 animals/dose
group, 1/day

M 0, 2.5, 5.0 or
10.0 mg/kg bw

Cauda epididymis
sperm motility and
hyperactivity;
Sperm enzymes
(ATP, cAMP, GAPDS)
levels

2.5 mg/kg bw
per day (sperm
motility)

Only sperm parameters
measured

Supporting studies

Banik et al.
(1972)

Rat,
Sprague–
Dawley
Crj:CD

3-MCPD, 13–50 days,
gavage, 5–13 animals/
dose group, 1/day
Animals treated for
50 days (low-dose
group), 17 (or 34) days
(mid-dose group), or
20 days (high-dose
group)

M 0, 0.5, 2.5 or
25 mg/rat per day
(corresponding to
~ 1.3, 2.7 and
27 mg/kg bw,
respectively, based
on mean rat
weights)

Fertility 1.3 mg/kg bw
per day (fertility)

2.7 mg/kg bw
per day (fertility)

Different dose groups
were treated for periods
varying between 17 and
50 days (treatment
periods decreasing with
increasing dosage). Data
are not suitable for
hazard characterisation

Coppola
(1969)

Rat, Wistar 3-MCPD, 14 days,
gavage, 6–24 animals/
dose group, 1/day

M 0, 0.1, 0.5, 1, 5,
10, 25, 50 mg/kg
bw per day (main
study)
0 and 8 mg/kg bw
per day (satellite
study)

Reproductive Main
study: prostate and
testes weights,
fertility; Satellite
study: Sperm count
and motility;
Fertility

1.0 mg/kg bw
per day (fertility)

5 mg/kg bw per
day (fertility)

No dose–response
analysis possible for
sperm quality parameters
(only one dose tested)

Johnson and
Pursel (1972)

Pigs 3-MCPD, 5 days, diet,
1–2 animals/dose
group, 1/day

M Exp. 1 = 1, 5, 25 or
50 mg/kg bw

Reproductive
organs
histopathology;
Sperm count,
motility and
morphology;
Fertility

1 mg/kg bw per
day (fertility)

No independent control
group, very low number
of animals per group
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Reference
Species,
strain

Compound(s) and
exposure protocol
(duration, recovery,
regime, number of
animals, timing)

Sex Doses tested
Developmental
and reproductive
endpoints

NOAEL LOAEL Comments

Kwack et al.
(2004)

Rat,
Sprague–
Dawley

3-MCPD, 4 weeks,
gavage, 15 animals/
dose group,

M 0, 0.01, 0.05, 0.25,
1 or 5 mg/kg bw

Reproductive
organs weight and
histopathology;
Sperm count and
motility; Fertility;
Number of corpora
lutea, implants and
resorptions; Fetal
viability, weight and
morphology;
Placental weight

0.05 mg/kg bw
per day
(decreased
epididymal
sperm count)

0.25 mg/kg bw
per day
(decreased
epididymal sperm
count)

Lack of methodological
details and inconsistency
in the reporting results on
fertility and reproduction
Decrease in epididymal
sperm count was difficult
to explain in the absence
of histopathological
findings

Rooney and
Jackson
(1980)

Rat, Wistar
American
strain

3-MCPD, 3-MCPD
nitrobenzoate or 3-
MCPD
acetamidobenzoate,
single administration or
1–25 weeks, gavage, 5
animals/dose group, 1/
day

M 3-MCPD: 10 or
20 mg/kg bw;

3-MCPD
nitrobenzoate: 25,
75, 600 or
3,000 mg/kg bw
(equimolar to 0.06,
0.18, 1.47 and
7.35 nmol/kg bw of
free 3-MCPD,
respectively);

3-MCPD
acetamidobenzoate:
25 or 400 mg/kg
bw (equimolar to
0.09 and
1.54 nmol/kg bw of
free 3-MCPD,
respectively)

Fertility – – The study is limited in
both detail and scope.
The esters used would
not be likely to occur in
food although the data
does support that
esterification of 3-MCPD
decreases the potency
in comparison to free
3-MCPD
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Reference
Species,
strain

Compound(s) and
exposure protocol
(duration, recovery,
regime, number of
animals, timing)

Sex Doses tested
Developmental
and reproductive
endpoints

NOAEL LOAEL Comments

Sawada et al.
(2015)

Rat, Wistar
Crl:WI

3-MCPD or 3-MCPD
dipalmitate, 28 days,
gavage, 2–6 animals
dose group, 1/day

M 3-MCPD = 10 mg/kg
bw

3-MCPD
dipalmitate = 13.3
or 53.0 mg/kg bw
(corresponding to
2.5 and 10 mg/kg
bw, respectively)

Testis weight,
histopathology and
proteomics analysis

– – Little value for risk
assessment with
exception that it suggests
esters effects due to
metabolism to free MCPD.
Proteomic analysis was on
whole testis and not on
the epididymis or sperm

Cited but not used as not meeting quality criteria
Ericsson and
Baker (1970)

Rat,
Sprague–
Dawley
(Spartan and
Upjohn);
Guinea-pigs

Exp.1 (rats) = 3-MCPD,
8 days, s.c. injection, 3
animals/dose group,
1/day;

Exp.2 (rats) = 3-MCPD,
1–8 days, gavage, 3–
63 animals/dose group,
1/day

Exp.3 (guinea
pigs) = 3-MCPD, 45
days, s.c. injection, 4
animals/dose group,
1/day

M Exp.1 = 0.5, 1.5,
3.0 mg/day;

Exp.2 = 1.0, 1.5,
2.0, 3.0, 5.0, 10,
15 or 30 mg/day;

Exp.3: 50 mg/day

Reproductive
organs weight and
histopathology;
Sperm motility;
Fertility

– – No control group
included, dose–response
analysis not possible

Ericsson and
Ericsson
(1996)

Rat,
Sprague–
Dawley
(Spartan)

Exp.1 = 3-MCPD, single
administration, gavage,
9–10 animals/dose
group

Exp.2 = 3-MCPD, 7
days, 3–5 animals/dose
group, 1/day

Exp.3 = 3-MCPD, 78
days, 7–9 animals/dose
group, 2/day

M Exp.1 = 30, 40, 50
or 60 mg/kg bw;

Exp.2 = 20, 40, 60
or 80 mg/kg bw;

Exp.3 = 15, 30 or
45 mg/kg bw

Epididymis
histopathology

– – No control group
included, dose–response
analysis not possible
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Reference
Species,
strain

Compound(s) and
exposure protocol
(duration, recovery,
regime, number of
animals, timing)

Sex Doses tested
Developmental
and reproductive
endpoints

NOAEL LOAEL Comments

Ford and
Harrison
(1983)

Rat, CD;
Mice, CD-1;
guinea pig;
golden
hamster

Exp.1 (rats) = 3-
MCPD, 10 days,
gavage, 4 animals/dose
group, 1/day;

Exp.2 (rats) = 3-MCPD,
1–4 days, gavage, 4
animals/dose group,
1/day;

Exp.3 (rats) = 3-MCPD,
3–10 days, gavage
(after ligature of
epididymis), 5 animals/
dose group, 1/day;

Exp.4 (hamsters) = 3-
MCPD, 10 days,
gavage, 4 animals/dose
group, 1/day;

Exp.5 (guinea pigs):
3-MCPD, 10 days, s.c.
injection, 4 animals/
dose group, 1/day;

Exp.6 (mice) = 3-
MCPD, 10 days,
gavage, 8 animals/dose
group, 1/day

M Exp. 1 = 4, 8 or 25
mg/kg bw

Exp.2/3 = 8 mg/kg
bw

Exp.4 = 50 or 100
mg/kg bw

Exp.5 = 66 mg/kg
bw

Exp. 6 = 44 mg/kg
bw

Epididymis sperm
count and enzyme
activity (GAPDH)

– – Experiments mainly
focussing on the
identification of the mode
of action of fertility
effects. Data not suitable
for hazard
characterisation

Helal (1982) Rat, Nile field
and Albino

3-MCPD, single
administration, gavage,
5 animals/dose group

M 0.5, 1, 2, 4, 6, 10,
20, 40, 60 or
80 mg/kg bw

Reproductive
organs
histopathology;
Fertility

– – Limitations in the
reporting of the study
design and performance.
Single administration
study
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Reference
Species,
strain

Compound(s) and
exposure protocol
(duration, recovery,
regime, number of
animals, timing)

Sex Doses tested
Developmental
and reproductive
endpoints

NOAEL LOAEL Comments

Jackson et al.
(1977)

Rat (strain
not specified)

Exp.1 = (S)- or (R)-3-
MCPD, single
administration, gavage,
5 animals/dose group
Exp.2 = (S)-3-MCPD,
13 days, gavage, 5
animals/dose group,
1/day

M Exp.1 = 0, 12.5
(racemic mixture)
or 25 (S) mg/kg bw
Exp.2 = 0, 2.5 or 5
mg/kg bw

Fertility – – No statistics, no threshold
dose calculation possible

Zhang et al.
(2008)

Mouse, CD-1
(ICR)

3-MCPD, 2 or 8
months, gavage, 4–16
animals/dose group,
1/day (presumed, not
explicitly stated)

M 0, 2.9, 5.9 or 11.7
mg/kg bw

Reproductive
organs weight and
histopathology;
Epididymis sperm
count; Fertility and
mating

11.7 mg/kg bw
per day (mating
and fertility after
2 months;
epididymis
sperm count,
testis and
epididymis
histopathology
after 8 months)

– Unclear dose regime and
randomisation

bw: body weight; CDO: 3-MCPD oleate diester; CDP: 3-MCPD palmitate diester; CMP: 3-MCPD palmitate monoester; F: female; LOAEL: lowest-observed-adverse-effect level; M: male; MCPD: 3-
and 2-monochloropropane diol; SD: standard deviation; SE: standard error; LDH: lactate dehydrogenase; ATP: glyceraldehyde-3-phosphate dehydrogenase; cAMP: cyclic adenosine
monophosphate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.
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Appendix B – Benchmark dose modelling of incidence of kidney tubular cell
hyperplasia in male Fischer rats (Sunahara et al., 1993)

A. Data description

As discussed in detail in the previous EFSA opinion (EFSA CONTAM Panel 2016), F344 rats (50/sex
per dose group) were exposed to nominal concentrations of 0, 20, 100 or 500 mg/L 3-MCPD via
drinking water in a 2-year study. Analytical measures revealed an average background concentration of
2.47 mg/L 3-MCPD in drinking water and average concentrations of 26.5, 105.9 and 502.8 mg/L 3-
MCPD for the three treatment groups, respectively. For these, calculated mean daily intakes were
given in the report as 1.1, 5.2 or 28.3 mg/kg bw per day for males. The CONTAM Panel calculated a
3-MCPD daily intake of 0.11 mg/kg bw per day for male controls. Incidence of kidney tubular cell
hyperplasia was as reported below:

Dose (mg/kg bw per day) Incidence of tubular cell hyperplasia Number of animals

0.11 3 50

1.10 6 50
5.20 15 50

28.30 34 50

bw: body weight.

B. Selection of the BMR

A default benchmark response (BMR) of 10% (extra risk compared with the background risk) and a
90% interval around the BMD were selected as recommended by EFSA Scientific Committee (2017).

C. Software used and specifications

Results are obtained using the R-package ‘bmdModeling’.

• Fitting benchmark dose models is based on the R-package proast64.9.
• Model averaging results from multiple fitted benchmark dose models is based on the

methodology in Wheeler and Bailer (2008).
• Default set of fitted models were applied as recommended by EFSA Scientific Committee

(2017).
• Selection of BMDL was carried out following the flow chart of EFSA Scientific Committee

(2017).

D. Results

Table with summary of the fitted models

Model
Number of
parameters

Log-
likelihood

AIC BMD BMDL BMDU Converged
Accepted

AIC

Null 1 �120.43 242.86 NA NA NA Yes

Full 4 �91.58 191.16 NA NA NA Yes
Logistic 2 �94.54 193.08 6.43 NA NA Yes No

Probit 2 �94.32 192.64 6.00 NA NA Yes No
Log-logistic 3 �91.58 189.16 1.64 0.42 4.11 Yes Yes

Log-probit 3 �91.60 189.20 1.80 0.58 4.23 Yes Yes
Weibull 3 �91.60 189.20 1.32 0.28 3.96 Yes Yes

Gamma 3 �91.62 189.24 1.22 0.22 4.03 Yes Yes
Two-stage 3 �92.11 190.22 2.59 1.95 3.60 Yes Yes

LVM: Expon. m3- 3 �91.63 189.26 0.34 0.89 3.62 Yes Yes

LVM: Hill m3- 3 �91.61 189.22 0.31 1.10 3.74 Yes Yes

AIC: Akaike information criterion; BMD: benchmark dose; BMDL: benchmark dose lower confidence limit; BMDU: benchmark
dose upper confidence limit.
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Weights for Model Averaging

two.stage log.logist Weibull log.prob Gamma Logistic Probit EXP HILL

0.09 0.15 0.15 0.15 0.14 0.02 0.03 0.14 0.14

Given 1,000 generated data sets, the BMDL is the 5th percentile of all parametric bootstrap BMD
values and the BMDU is the 95th percentile.

Estimated BMD (in mg/kg bw per day) based on the averaged response model which is a weighted
average of the accepted models’ response values.

BMD BMDL BMDU

1.47 0.54 4.91
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Appendix C – Benchmark dose modelling of incidence of kidney tubular cell
hyperplasia in female Fischer rats (Sunahara et al., 1993)

A. Data description

As discussed in detail in the previous EFSA opinion (EFSA CONTAM Panel, 2016), F344 rats (50/sex
per dose group) were exposed to nominal concentrations of 0, 20, 100 or 500 mg/L 3-MCPD via
drinking water in a 2-year study. Analytical measures revealed an average background concentration of
2.47 mg/L 3-MCPD in drinking water and average concentrations of 26.5, 105.9 and 502.8 mg/L 3-
MCPD for the three treatment groups, respectively. For these, calculated mean daily intakes were
given in the report as 1.4, 7.0 or 35.3 mg/kg bw per day for females. The CONTAM Panel calculated a
3-MCPD daily intake of 0.14 mg/kg bw per day female controls. Incidence of kidney tubular cell
hyperplasia was as reported below:

Dose (mg/kg bw per day) Incidence of tubular cell hyperplasia Number of animals

0.14 2 50
1.4 4 50

7.0 20 50

35.3 31 50

B. Selection of the BMR

A default benchmark response (BMR) of 10% (extra risk compared with the background risk) and a
90% interval around the BMD were selected as recommended by EFSA Scientific Committee (2017).

C. Software used and specifications

Results are obtained using the R-package ‘bmdModeling’.

• Fitting benchmark dose models is based on the R-package proast64.9.

• Model averaging results from multiple fitted benchmark dose models is based on the
methodology in Wheeler and Bailer (2008).

• Default set of fitted models were applied as recommended by EFSA Scientific Committee
(2017)

• Selection of BMDL was carried out following the flow chart of EFSA Scientific Committee (2017)

D. Results

Table with summary of the fitted models

Model
Number of
parameters

Log-
likelihood

AIC BMD BMDL BMDU Converged
Accepted

AIC

Null 1 �119.52 241.04 NA NA NA Yes
Full 4 �89.19 186.38 NA NA NA Yes

Logistic 2 �97.97 199.94 8.49 NA NA Yes No
Probit 2 �97.61 199.22 7.94 NA NA Yes No

Log-logistic 3 �90.34 186.68 1.23 0.41 2.98 Yes Yes
Log-probit 3 �90.19 186.38 1.55 0.47 3.26 Yes Yes

Weibull 3 �90.71 187.42 0.84 0.33 1.68 Yes Yes
Gamma 3 �90.92 187.84 0.83 0.29 1.72 Yes Yes

Two-stage 3 �93.01 192.02 3.24 NA NA Yes No
LVM: Expon.
m5-

4 �89.19 186.38 1.00 0.48 2.08 Yes Yes

LVM: Hill m5- 4 �89.19 186.38 0.95 0.42 2.04 Yes Yes

AIC: Akaike information criterion; BMD: benchmark dose; BMDL: benchmark dose lower confidence limit; BMDU: benchmark
dose upper confidence limit.
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Weights for Model Averaging

two.stage log.logist Weibull log.prob Gamma Logistic Probit EXP HILL

0.01 0.21 0.14 0.24 0.12 0 0 0.1 0.17

Given 1,000 generated data sets, the BMDL is the 5th percentile of all parametric bootstrap BMD
values and the BMDU is the 95th percentile.

Estimated BMD (in mg/kg bw per day) based on the averaged response model which is a weighted
average of the accepted models’ response values.

BMD BMDL BMDU

1.15 0.55 3.7
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Appendix D – Benchmark dose modelling of incidence of kidney tubular
cell hyperplasia in male Sprague–Dawley rats (Cho et al., 2008b)

A. Data description

As discussed in detail in the previous EFSA opinion (EFSA CONTAM Panel, 2016), SD rats (50/sex
per dose group) were exposed to 0, 25, 100 or 400 mg/L 3-MCPD via drinking water in a 2-year study.
Doses were converted to average daily intake of 0, 2.0, 8.3 or 29.5 mg/kg bw for males. Incidence of
kidney tubular cell hyperplasia was as reported below:

Dose (mg/kg bw per day) Incidence of tubular cell hyperplasia Number of animals

0.0 1 50

2.0 11 50
8.3 21 50

29.5 36 50

bw: body weight.

B. Selection of the BMR

A default benchmark response (BMR) of 10% (extra risk compared with the background risk) and a
90% interval around the BMD were selected as recommended by EFSA Scientific Committee (2017).

C. Software used and specifications

Results are obtained using the R-package ‘bmdModeling’.

• Fitting benchmark dose models is based on the R-package proast64.9.
• Model averaging results from multiple fitted benchmark dose models is based on the

methodology in Wheeler and Bailer (2008).
• Default set of fitted models were applied as recommended by EFSA Scientific Committee

(2017).
• Selection of BMDL was carried out following the flow chart of EFSA Scientific Committee

(2017).

D. Results

Table with summary of the fitted models

Model
Number of
parameters

Log-
likelihood

AIC BMD BMDL BMDU Converged
Accepted

AIC

Null 1 �128.86 259.72 NA NA NA Yes

Full 4 �94.91 197.82 NA NA NA Yes
Logistic 2 �102.47 208.94 5.63 NA NA Yes No

Probit 2 �102.18 208.36 5.36 NA NA Yes No
Log-logistic 3 �95.07 196.14 0.85 0.23 1.91 Yes Yes

Log-probit 3 �95.10 196.20 0.93 0.28 1.96 Yes Yes
Weibull 3 �94.94 195.88 0.64 0.14 1.66 Yes Yes

Gamma 3 �94.91 195.82 0.54 0.08 1.61 Yes Yes
Two-stage 3 �97.44 200.88 2.14 NA NA Yes No

LVM: Expon.
m3-

3 �94.92 195.84 0.49 0.17 1.42 Yes Yes

LVM: Hill m3- 3 �94.93 195.86 0.59 0.13 1.55 Yes Yes

AIC: Akaike information criterion; BMD: benchmark dose; BMDL: benchmark dose lower confidence limit; BMDU: benchmark
dose upper confidence limit.
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Weights for model averaging

two.stage log.logist Weibull log.prob Gamma Logistic Probit EXP HILL

0.01 0.15 0.17 0.14 0.18 0 0 0.17 0.17

Given 1,000 generated data sets, the BMDL is the 5th percentile of all parametric bootstrap BMD
values and the BMDU is the 95th percentile.

Estimated BMD (in mg/kg bw per day) based on the averaged response model which is a weighted
average of the accepted models’ response values.

BMD BMDL BMDU

0.68 0.20 1.95
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Appendix E – Benchmark dose modelling of incidence of kidney tubular cell
hyperplasia in female Sprague–Dawley rats (Cho et al., 2008b)

A. Data description

As discussed in detail in the previous EFSA opinion (EFSA CONTAM Panel, 2016), SD rats (50/sex
per dose group) were exposed to 0, 25, 100 or 400 mg/L 3-MCPD via drinking water in a 2-year study.
Doses were converted to average daily intake of 0, 2.7, 10.3 or 37.0 mg/kg bw for females. Incidence
of kidney tubular cell hyperplasia was as reported below:

Dose (mg/kg bw per day) Incidence of tubular cell hyperplasia Number of animals

0.0 1 50
2.7 0 50

10.3 1 50

37.0 10 50

bw: body weight.

B. Selection of the BMR

A default benchmark response (BMR) of 10% (extra risk compared with the background risk) and a
90% interval around the BMD were selected as recommended by EFSA Scientific Committee (2017).

C. Software used and specifications

Results are obtained using the R-package ‘bmdModeling’.

• Fitting benchmark dose models is based on the R-package proast64.9.
• Model averaging results from multiple fitted benchmark dose models is based on the

methodology in Wheeler and Bailer (2008).
• Default set of fitted models were applied as recommended by EFSA Scientific Committee

(2017)
• Selection of BMDL was carried out following the flow chart of EFSA Scientific Committee (2017)

D. Results

Table with summary of the fitted models

Model
Number of
parameters

Log-
likelihood

AIC BMD BMDL BMDU Converged
Accepted

AIC

Null 1 �45.39 92.78 NA NA NA Yes
Full 4 �34.82 77.64 NA NA NA Yes

Logistic 2 �35.66 75.32 29 24.1 35.8 Yes Yes
Probit 2 �35.71 75.42 28 22.4 35.7 Yes Yes

Log-logistic 3 �35.54 77.08 28 18.2 36.8 Yes Yes
Log-probit 3 �35.53 77.06 26 17.0 37.2 Yes Yes

Weibull 3 �35.54 77.08 28 18.6 37.2 Yes Yes
Gamma 3 �35.53 77.06 27 18.4 37.0 Yes Yes

Two-stage 3 �35.61 77.22 26 20.6 35.8 No Yes
LVM: Expon.
m3-

3 �35.57 77.14 31 20.2 36.7 Yes Yes

LVM: Hill m3- 3 �35.56 77.12 30 19.7 36.6 Yes Yes

AIC: Akaike information criterion; BMD: benchmark dose; BMDL: benchmark dose lower confidence limit; BMDU: benchmark
dose upper confidence limit.

Update on 3-MCPD and its fatty acid esters

www.efsa.europa.eu/efsajournal 39 EFSA Journal 2018;16(1):5083



Weights for Model Averaging

two.stage log.logist Weibull log.prob Gamma Logistic Probit EXP HILL

0.08 0.09 0.09 0.09 0.09 0.21 0.2 0.08 0.08

Given 1,000 generated data sets, the BMDL is the 5th percentile of all parametric bootstrap BMD
values and the BMDU is the 95th percentile.

Estimated BMD (in mg/kg bw per day) based on the averaged response model which is a weighted
average of the accepted models’ response values.

BMD BMDL BMDU

28 20 36
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Appendix F – Benchmark dose modelling of decreased sperm curvilinear
velocity in Sprague–Dawley rats (Ban et al., 1999)

A. Data description

Sprague–Dawley male rats (N = 12–13/group) were exposed by gavage to 0, 1, 3 or 10 mg 3-
MCPD/kg bw per day for nine days. The curvilinear velocity (VCL) was measured and mean
levels � standard deviations were reported:

Dose (mg/kg bw per day) VCL (lm/s) SD (lm/s) N

0 449.9 27.8 12

1 441.3 39.8 12
3 402.0 20.4 13

10 309.2 73.2 13

bw: body weight; VCL: curvilinear velocity; SD: standard deviation.

B. Selection of the BMR

A BMR of 5% and a 90% interval around the BMD were selected as recommended by EFSA
Scientific Committee (2017). BMR of 5% was considered appropriate both from a statistical and
biological standpoint.

C. Software used and specifications

Results are obtained using the R-package ‘bmdModeling’.

• Fitting benchmark dose models is based on the R-package proast64.9.
• Default set of fitted models were applied as recommended by EFSA Scientific Committee

(2017)
• Selection of BMDL was carried out following the flow chart of EFSA Scientific Committee (2017)

D. Results

Model Converged loglik npar AIC

Full Yes 31.93 5 �53.86

m1- (null) Yes 8.17 2 �12.34
Expon. m3- Yes 31.89 4 �55.78

Expon. m5- Yes 31.93 5 �53.86
Hill m3- Yes 31.90 4 �55.80

Hill m5- Yes 31.93 5 �53.86

AIC: Akaike information criterion.

Final BMD Values

Model BMDL BMDU BMD

Expon. m3- 0.44 3.88 1.5

Hill m3- 0.51 3.83 1.5

BMD: benchmark dose; BMDL: benchmark dose lower confidence limit; BMDU: benchmark dose upper confidence limit.
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Appendix G – Benchmark dose modelling of decreased sperm count in
Sprague–Dawley rats (Li et al., 2003)

A. Data description

Sprague–Dawley male rats (N = 22/group) were exposed by gavage to 0, 0.25, 0.5, 1, 2, 4, 8 or
16 mg 3-MCPD/kg bw per day for 90 days. The epididymal sperm count was measured as number of
sperm/g epididymis and mean levels � standard deviations were reported:

Dose Sperm count (1 3 106/g) SD (1 3 106/g) N

0.00 202.0 46.4 22

0.25 197.0 41.7 22
0.50 185.7 97.2 22

1.00 178.4 57.0 22
2.00 170.0 71.7 22

4.00 151.4 68.6 22
8.00 91.8 43.9 21

16.00 52.9 29.7 20

B. Selection of the BMR

As discussed in Section 3.3.2, the CONTAM Panel did not consider the selection of the default BMR
of 5% for continuous data as appropriate for changes in epididymal sperm count. Instead, the
Panel considered to use one standard deviation calculated for the control group as a BMR, as
recommended by US EPA (2012), resulting in a BMR of 23%.

A 90% interval around the BMD was selected as recommended.

C. Software used and specifications

Results are obtained using the R-package ‘bmdModeling’.

• Fitting benchmark dose models is based on the R-package proast64.9.
• Default set of fitted models were applied as recommended by EFSA Scientific Committee

(2017).
• Selection of BMDL was carried out following the flow chart of EFSA Scientific Committee

(2017).

D. Results

Fitted Models

Model Converged loglik npar AIC

Full Yes �80.91 9 179.82

m1- Yes �157.13 2 318.26
Expon. m3- Yes �82.53 4 173.06

Expon. m5- Yes �82.34 5 174.68
Hill m3- Yes �82.51 4 173.02

Hill m5- Yes �82.51 5 175.02

AIC: Akaike information criterion.

Final BMD Values

Model BMDL BMDU BMD

Expon. m3- 1.34 3.74 2.39

Hill m3- 1.94 4.25 3.02

BMD: benchmark dose; BMDL: benchmark dose lower confidence limit; BMDU: benchmark dose upper confidence limit.
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Appendix H – Benchmark dose modelling of incidence of seminiferous
tubule atrophy in Sprague–Dawley rats (Cho et al., 2008b)

A. Data description

As discussed in detail in the previous EFSA opinion (EFSA CONTAM Panel, 2016), SD rats (50/sex
per dose group) were exposed to 0, 25, 100 or 400 mg/L 3-MCPD via drinking water in a 2-year study.
Doses were converted to average daily intake of 0, 2.0, 8.3 or 29.5 mg/kg bw for males. Incidence of
testis atrophy was as reported below:

Dose (mg/kg bw per day) Testis atrophy N

0.0 6 50

1.97 16 50
8.3 13 50

29.5 34 50

bw: body weight.

B. Selection of the BMR

A default benchmark response (BMR) of 10% (extra risk compared with the background risk) and a
90% interval around the BMD were selected as recommended by EFSA Scientific Committee (2017).

C. Software used and specifications

Results are obtained using the R-package ‘bmdModeling’.

• Fitting benchmark dose models is based on the R-package proast64.9.
• Model averaging results from multiple fitted benchmark dose models is based on the

methodology in Wheeler and Bailer (2008).
• Default set of fitted models were applied as recommended by EFSA Scientific Committee

(2017).
• Selection of BMDL was carried out following the flow chart of EFSA Scientific Committee

(2017).

D. Results

Table with summary of the fitted models

Model No. of parameters loglik AIC Accepted BMDL BMDU BMD conv

Null 1 �128.86 259.72 NA NA NA NA

Full 4 �109.69 227.38 NA NA NA NA
Two.stage 3 �112.35 230.70 No NA NA 5.8 Yes

Log.logist 3 �112.64 231.28 No NA NA 9.7 Yes
Weibull 3 �112.57 231.14 No NA NA 7.2 Yes

Log.prob 3 �113.40 232.80 No NA NA 2.2 Yes
Gamma 3 �112.53 231.06 No NA NA 2.0 Yes

Logistic 2 �112.32 228.64 Yes 5.030 7.93 6.2 Yes
Probit 2 �112.32 228.64 Yes 4.860 7.63 6.0 Yes

LVM: Expon. m3- 3 �112.17 230.34 No 0.195 24.10 2.7 Yes

LVM: Hill m3- 3 �112.31 230.62 No 0.218 17.80 3.0 Yes

AIC: Akaike information criterion; BMD: benchmark dose; BMDL: benchmark dose lower confidence limit; BMDU: benchmark
dose upper confidence limit.

Weights for Model Averaging

two.stage log.logist Weibull log.prob Gamma Logistic Probit EXP HILL

0.09 0.06 0.07 0.03 0.07 0.24 0.24 0.1 0.09

Update on 3-MCPD and its fatty acid esters

www.efsa.europa.eu/efsajournal 45 EFSA Journal 2018;16(1):5083



Given 1,000 generated data sets, the BMDL is the 5th percentile of all parametric bootstrap BMD
values and the BMDU is the 95th percentile.

Estimated BMD (in mg/kg bw per day) based on the averaged response model which is a weighted
average of the accepted models’ response values.

Final BMD Values

BMD BMDL BMDU

4.86 1.55 14.4
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Appendix I – Benchmark dose modelling of incidence of vacuolisation of
epididymal epithelium in Sprague–Dawley rats (Kim et al., 2012)

A. Data description

Sprague–Dawley male rats (N = 6/group) were exposed to 0, 3, 10 or 30 mg 3-MCPD/kg bw per
day for 7 days. Histopathology analyses of epididymis showed an increase in vacuolisation in epithelial
cells with the following dose response:

Dose Incidence N

0 0 6
3 1 6

10 4 6

30 6 6

B. Selection of the BMR

A default benchmark response (BMR) of 10% (extra risk compared with the background risk) and a
90% interval around the BMD were selected as recommended by EFSA Scientific Committee (2017).

C. Software used and specifications

Results are obtained using the R-package ‘bmdModeling’.

• Fitting benchmark dose models is based on the R-package proast64.9.
• Model averaging results from multiple fitted benchmark dose models is based on the

methodology in Wheeler and Bailer (2008).
• Default set of fitted models were applied as recommended by EFSA Scientific Committee

(2017).
• Selection of BMDL was carried out following the flow chart of EFSA Scientific Committee

(2017).

D. Results

Table with summary of the fitted models

Model
No. of

parameters
loglik AIC Accepted BMDL BMDU BMD conv

Null 1 �16.55 35.10 NA NA NA NA
Full 4 �6.52 21.04 NA NA NA NA

Two.stage 3 �6.53 19.06 Yes 0.592 4.74 2.0 Yes
Log.logist 3 �6.77 19.54 No NA NA 2.5 Yes

Weibull 3 �6.54 19.08 Yes 0.269 9.93 2.2 Yes
Log.prob 3 �6.69 19.38 Yes 0.581 10.70 2.6 Yes

Gamma 3 �6.57 19.14 Yes 0.154 9.53 2.3 Yes
Logistic 2 �6.83 17.66 Yes 1.740 6.12 3.4 Yes

Probit 2 �6.76 17.52 Yes 1.670 5.60 3.2 Yes
LVM: Expon. m3- 3 �6.55 19.10 Yes 0.224 7.93 2.2 Yes

LVM: Hill m3- 3 �6.59 19.18 Yes 0.309 7.54 2.4 Yes

AIC: Akaike information criterion; BMD: benchmark dose; BMDL: benchmark dose lower confidence limit; BMDU: benchmark
dose upper confidence limit.

Weights for Model Averaging

two.stage log.logist Weibull log.prob Gamma Logistic Probit EXP HILL

0.09 0.07 0.09 0.08 0.09 0.19 0.2 0.09 0.09
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Given 1,000 generated data sets, the BMDL is the 5th percentile of all parametric bootstrap BMD
values and the BMDU is the 95th percentile.

Estimated BMD (in mg/kg bw per day) based on the averaged response model which is a weighted
average of the accepted models’ response values.

Final BMD values from model averaging

BMD BMDL BMDU

2.59 1.34 8.50
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