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Abstract 

Plant-based diets are associated with both physical health and psychological wellbe-

ing. Recent evidence suggests that kiwifruit positively affects cognitive functions and 

mood, but the bioactive components responsible for this are unknown. In this work, we 

combined two predictive preclinical models of depression (TST and FST) with untar-

geted metabolomics to evaluate the antidepressant activity of green kiwifruit in mice 

and to identify the fruit bioactive phytochemicals responsible for this effect. Mice treated 

with green kiwifruit juice showed dose-dependent reductions in depressive behavior. 

Two kiwifruit-derived metabolites – quinic acid and caffeic acid sulfate (the latter formed 

in mice via metabolism of kiwifruit caffeic acid glucosides) – were detected in mouse 

serum and brain tissue, suggesting they may confer the observed effects. When admin-

istered as pure compounds, quinic acid closely replicated the antidepressant effect of 

kiwifruit juice, whereas caffeic acid glucoside had little impact. Other fruit metabolites 

may act synergistically with quinic acid to increase its bioavailability in serum and its 

absorption into the brain parenchyma. Our approach thus led to the discovery of quinic 

acid as the kiwifruit metabolite capable of rapidly reaching the mouse brain and exert-

ing an antidepressant effect in synergy with other fruit metabolites.

Introduction

The beneficial effects of a diet rich in fruits, vegetables, nuts, and other plant-based 
ingredients are well known and recognized, especially for the prevention of cardio-
vascular disease [1,2]. More recently, links have emerged between plant-based diets 
and mental health. Nutrition and mental health are generally interconnected and 
reciprocally affected, and this has been observed primarily with depression [3–5]. 
Healthy nutrition plays a key role in the onset and severity of some mental health 
disorders, with affected individuals frequently showing nutritional deficiencies [6].
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Observational and small interventional studies have investigated the effects of a 
diet rich in plant-based ingredients or the entire dietetic patterns containing them. 
One example is the Mediterranean diet, typical in olive-growing regions of the Medi-
terranean [7,8], which has been associated to cognitive performance benefits [9,10], 
the prevention of depression [11–14] and general psychological wellbeing [15–20]. 
Randomized controlled interventional studies [21], as well as in vitro and in vivo tests 
in animal models and humans, suggest that some fresh and even processed fruits 
and vegetables have positive effects on the brain, including gold kiwifruit (Actinidia 
chinensis) [22], green kiwifruit (Actinidia deliciosa) [23], blackcurrant, blueberry, 
cherry, cranberry, grape, apple [24], orange juice [25,26], and onion [27]. However, 
the active compounds and their effectiveness in vivo remain largely unknown.

The active compounds in complex mixtures, such as natural phytocomplexes, can 
be difficult to find. Traditional bioassay-guided fractionation is a powerful approach, 
but the fractionation procedures are time-consuming and tend to dilute the active 
components as well as separating them from potentially synergistic compounds. 
Such limitations can be addressed by metabolomics and biochemometrics [28,29]. 
Furthermore, the investigation of compound bioavailability recently led to the identifi-
cation of active molecules (and their metabolic products in mice) in a brain-bioactive 
dietary polyphenol preparation composed of different grape ingredients, revealing 
their molecular targets and mechanisms of action [30].

Here we applied untargeted metabolomics to kiwifruit juice, mouse blood and brain 
tissue to identify brain-bioactive compounds present in green kiwifruit. One molecule 
(quinic acid) was responsible for most of the observed anti-depressant effects of the 
whole juice, but other metabolites may act as co-factors to increase its levels in the 
serum and brain parenchyma. Our two-step approach, combining untargeted metab-
olomics with in vivo bioassays, can help uncover bioactive compounds in complex 
plant mixtures, providing insight into their interactions with each other and with tar-
gets in vivo.

Materials and methods

Chemicals

Fluoxetine HCl was purchased from Alomone Laboratories (Jerusalem, Israel. Cat. 
No.: F155), and escitalopram from MedChemExpress (Monmouth Junction, NJ, USA. 
Cat. No.: HY-14258). d-(−)-quinic acid (QA) and caffeic acid 3β-d-glucoside (CAG) 
were purchased from Santa Cruz Biotechnology (Heidelberg, Germany). Acetonitrile, 
methanol and water were purchased from Honeywell (Seezle, Germany), formic acid 
from Biosolve (Dieuze, France) and leucine-enkephalin solution from Waters (Milan, 
Italy). All solvents used were LC-MS grade.

Animal treatment

Naïve male C57Bl/6JOlaHsd mice (Envigo RMS Srl, San Pietro al Natisone, 
Udine, Italy), 5 weeks of age and weighing 20–25 g, were housed in groups of six 
in Optimice cages (36.3 × 29.2 × 15.5 cm) with sawdust as a bedding material. The 
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temperature was maintained at 21 ± 1 °C, the relative humidity at 60%, and we imposed a 12-h photoperiod from 7:00–
19:00. Food (Mucedola NFM18) and water were provided ad libitum. Animals were allowed to adapt to laboratory condi-
tions for at least 2 weeks before experiments. They were randomly assigned to experimental or control groups (n = 12/16 
for behavioral experiments, n = 4 for pharmacokinetics and n = 6 for perfusion). Procedures involving animals were carried 
out at the University of Verona according to the Italian Governing Law (D.lgs 26/2014; authorization no. 19/2008-A issued 
6 March 2008 by the Ministry of Health), the NIH Guide for the Care and Use of Laboratory Animals (2011 edition), and 
EU Directive 2010/63/EU. All reported animal care and experimental procedures were approved by the ethical committee 
(OPBA) of the University of Verona and by the Ministry of Health (authorization nos. 775/2016-PR and 68/2020-PR).

Preparation and administration of kiwifruit juice and vehicle solutions

Kiwifruits (Actinidia deliciosa cv. Hayward) were sourced from local producers. The fruits were immediately peeled, sliced 
and frozen in liquid nitrogen. The frozen material was powdered using an A11 basic analytical mill (IKA-Werke, Staufen, 
Germany) and the powder was stored at –80 °C. To prepare the kiwifruit juice, 15 g of frozen homogenized powder were 
thawed and centrifuged at 3,650 × g for 15 min at 4 °C. The supernatant was centrifuged again at 21,000 × g for 15 min at 
4°C and passed through a 0.22-µm Millex PES filter (MilliporeSigma, Milan, Italy). This undiluted juice (Kiwi 1) was further 
diluted 1:2 (Kiwi 2) and 1:3 (Kiwi 3) with MilliQ water (MilliporeSigma). To exclude the effect of bulk primary metabolites 
(e.g., sugars, organic acids and ascorbic acid) on the behavioral tests, we created a vehicle solution replicating the con-
centrations of the major components as previously described [31].

Mice were treated with the three kiwifruit juice preparations or vehicle solution for 10 days using an intragastric (IG) 
gavage method (as a volume of 10 mL/Kg; [32]) and were tested 90 min after the last dose. In positive controls, fluoxe-
tine or escitalopram were administered intraperitoneally (IP) 30 min before the test at concentrations of 20 and 10 mg/kg, 
respectively [33,34].

Behavioral tests

For the forced swim test (FST), mice were placed for 6 min in a transparent poly(methyl methacrylate) cylinder (46 cm 
height × 20 cm diameter) filled to 30 cm with water at 25 ± 1 °C. Tank dimensions prevented mice from touching the bottom 
with their paws or tails during the test. Only the last 4 min of the test were analyzed because most mice tend to be more 
active at the beginning of the FST [35]. The immobility time was manually scored by a trained observer.

For the tail suspension test (TST), mice were suspended by the tail using a 17-cm tape attached to a fixed grid 60 cm 
above the bench [36,37]. To prevent tail-climbing behavior commonly observed in C57Bl/6J strain mice [38], which can 
confound the assessment of immobility times, a climb-stopper (4 cm length, 1.6 cm outer diameter, 1.3 cm inner diameter, 
1.5 g) was used. Immobility time was manually scored by a trained observer.

In both tests, one rectangular wood divider was used between tanks to prevent mice from seeing each other and poten-
tially altering their behavior. A white background enhanced contrast between the mice and wall in the recorded videos. 
Data represent the combined results of two independent experiments performed at different times using separate groups 
of animals to ensure reproducibility.

For the open field test (OFT), the locomotor activity of the mice was assessed for 5 min in a 40 × 40 cm open square 
arena with low light (~40 lux). Each mouse was taken from its cage and allowed to acclimatize for at least 1 h before the 
test. Total distance traveled and mean velocity of each mouse were recorded and analyzed using MATLAB Toolbox [39].

Preparation of mice serum and brain samples

After the behavioral test, mice were euthanized for serum and brain collection. Under deep isoflurane anesthesia, blood 
was drawn from the retro-orbital sinus using a non-heparinized glass capillary, left to clot at room temperature for 20 min, 
then centrifuged at 6,800 × g for 5 min at 4 °C. Supernatants were frozen in liquid nitrogen and stored at –80° C. Brains 
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were dissected, washed in 0.9% saline, frozen in liquid nitrogen, and stored at –80°C. Perfusion was carried out by wash-
ing the entire blood volume of anesthetized mice with cold 0.9% saline for 5 min [40], then dissecting and freezing the 
brains as described above.

Metabolite extraction for targeted and untargeted UPLC-qTOF-MS analysis

Serum samples were thawed at room temperature and 1-mL aliquots were diluted with 10 volumes of cold LC-MS-grade 
methanol. After mixing for 30 s and centrifuging at 3,650 × g for 15 min at 4 °C, the supernatant was transferred to a fresh 
tube and centrifuged at 21,000 × g for 20 min at 4 °C. The supernatant was passed through an Oasis PRiME HLB 1 cc Vac 
cartridge containing 30 mg of sorbent (Waters) attached to a Waters 20-position extraction manifold to remove proteins 
and phospholipids, according to the manufacturer’s instructions.

For metabolomics analysis, the methanol extracts were diluted 1:2 with LC-MS-grade water for C18 analysis and 1:2 
with LC-MS grade methanol for HILIC analysis. Extracts were then passed through 0.2-μm Minisart RC4 filters (Sartorius, 
Göttingen, Germany) and 3 μL of each extract was injected into the UPLC-qTOF-MS system.

Brain samples (about 180–220 mg) were homogenized in 10 volumes (w/v) of LC-MS-grade methanol at 4 °C using 
a Precellys cryolys evolution (Bertin, Montigny-le-Bretonneux, France), then sonicated at 40 kHz in a Sonica Ultrasonic 
Cleaner ultrasonic bath (SOLTEC, Milano, Italy) for 20 min. This was followed by two rounds of centrifugation, first at 
3,650 × g for 15 min and then at 21,000 × g for 15 min (both at 4° C). The supernatant was passed through an Oasis 
PRiME HLB 1 cc Vac cartridge for UPLC-MS as described above.

For the analysis of kiwifruit juice, 100 µL of Kiwi 1 was mixed with 900 µL of LC-MS-grade methanol at –20 °C and cen-
trifuged at 21,000 × g for 10 min at 4 °C. The supernatant was diluted and filtered as above, and 1 μL was injected in the 
UPLC-qTOF-MS system.

UPLC-qTOF-MS untargeted metabolomics

A Waters ACQUITY I CLASS UPLC system equipped with a refrigerated autosampler was connected to a Waters 
eLambda 800 nm PDA detector and a Waters Xevo G2-XS qTOF mass spectrometer featuring an electrospray ionization 
(ESI) source operating in either positive or negative ionization mode. The system was controlled by MassLynx v4.1. All 
extracts were injected into Waters ACQUITY UPLC BEH C18 and HILIC columns (2.1 mm × 100 mm, 1.7 μm) kept at 30 
°C. The C18 mobile phases consisted of 0.1% formic acid in water (A) and acetonitrile (B). The initial conditions were 99% 
A and 1% B and the following elution gradient was applied: 0–1 min, 1% B; 1–10 min, 1–40% B; 10–13.50 min, 40–70% 
B; 13.50–15.00 min, 70–90% B; 15.00–16.50 min, 90–100% B, 16.50–20 min, 100% B, 20–20.1 min, 100–1% B (ini-
tial conditions). The system was then equilibrated in 99% A up to 25 min. The HILIC mobile phases consisted of 20 mM 
ammonium formate in water (A) and 5% 10 mM of ammonium formate in water plus 95% acetonitrile (B). The initial condi-
tions were 0% A and 100% B, and the following elution profile was applied: 0–3 min, 100% B; 3–7 min, 100–85% B; 7–10 
min, 85% B; 10–15 min, 85–50% B; 15–20 min, 50% B; 20–20.10 min, 50–100% B (initial conditions). The system was 
then equilibrated in 100% B up to 30 min. The flow rate was set to 0.350 mL/min for both columns. Samples were kept at 
8 °C and analysis was randomized. A quality control (QC) sample was prepared by mixing equal parts of all samples in 
order to check UPLC-qTOF-MS performance. QC was injected after nine samples had been analyzed. Ion source param-
eters: capillary voltage 0.8 kV, sampling cone voltage 40 V, source offset voltage 80 V, source temperature 120 °C, desol-
vation temperature 500 °C, cone gas flow rate 50 L/h and desolvation gas flow rate 1000 L/h. Nitrogen gas was used for 
the nebulizer and desolvation, whereas argon was used to induce collision-induced dissociation. An MS method was cre-
ated to acquire data in continuum mode using a fixed collision energy in two scan functions. In function 1 the low energy 
was disabled, whereas in function 2 the high energy was set to 35 V. For some samples, the high energy was increased to 
45 V to achieve the better fragmentation of certain metabolites. In both functions, the Xevo G2-XS was set to perform the 
analysis in sensitivity mode, within the range 50–2000 m/z and with a scan time of 0.3 s. The lock mass solution used as 
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“calibrator” to verify the accuracy of the mass spectrometer consisted of a 100 pg/μL leucine-enkephalin solution injected 
at a flow rate of 10 μL/min, generating a signal of 556.2771 m/z in positive mode and 554.2615 m/z in negative mode.

Quinic acid and caffeic acid glucosides quantification in fresh kiwifruit juice

The absolute quantification of metabolites by LC-MS requires a careful evaluation of potential matrix effects that cause ion 
suppression or enhancement. Kiwi 1 was sequentially diluted, and the matrix effect disappeared at a dilution of 1:1600 for 
QA and 1:100 for CAG, but both metabolites were still well detectable. We also confirmed the absence of matrix effects 
by spiking and comparing the peak areas of three groups of samples: (1) diluted kiwifruit juice alone, (2) the same kiwifruit 
juice spiked with 1.5 ng/µL QA and 125 pg/µL CAG, and (3) a solution of pure standard compounds at the same concen-
trations. We analyzed 1 µL of each diluted solution three times by UPLC-qTOF-MS and no matrix effect was found for 
either of the metabolites. The peak area of the metabolites of interest was normalized for the dilution factor and compared 
with a calibration curve obtained using QA and CAG authentic standards.

Data processing and metabolite identification

The statistical significance of behavioral data was analyzed using Prism v9.0 (GraphPad Software, San Diego, CA, USA). 
Significant differences between samples were determined by one-way analysis of variance (ANOVA) followed by Dun-
nett’s post hoc test. The raw untargeted metabolomics data were processed using Progenesis QI (Waters). Absolute ion 
intensity for peak picking was set at 300, with a minimum chromatographic peak width of 0.03 min. An in-house library of 
authentic reference standards was used for metabolite identification, by comparing retention time, m/z ratios, isotope sim-
ilarities, fragmentation patterns (MS/MS) and UV-Vis absorbance spectra. Further tentative identifications were achieved 
using Metlin (https://metlin.scripps.edu) with a tolerance of 0.003 Da and an automatic online search of public databases 
(MassBank, PlantCyc, Plant Metabolic Network and Human Metabolome Database). Finally, literature data were used to 
support the putative annotations. QA and CAG identities were confirmed with authentic standards; the m/z, fragmentation 
pattern (MS/MS) and the UV-Vis absorbance spectrum of CAG were used also to identify its structural isomers. Because 
internal standards were not used, relative quantitation (i.e., comparison between samples) was based on the area of 
each of the signals extracted from the chromatograms and expressed in arbitrary intensity units. Orthogonal two‐block 
partial least squares-discriminant analysis (O2PLS-DA) was applied to the metabolomics feature quantification matrices 
using SIMCA 13.0 (Umetrics) after Pareto scaling and centering. A permutation test (200 permutations) was used for each 
OPLS-DA model to avoid overfitting.

Results

Kiwifruit juice shows dose-dependent antidepressant activity in mice

The antidepressant activity of fresh kiwifruit juice preparations (undiluted Kiwi 1 and its dilutions Kiwi 2 and Kiwi 3) was 
investigated in mice using the tail suspension test (TST) and forced swim test (FST) 90 min after the final intragastric 
(IG) administration in a 10-day trial. The highest dose (10 mL/kg Kiwi 1) was equivalent to the consumption of ~7 fruits 
by a 70-kg human male. Intraperitoneal (IP) fluoxetine (Prozac) at 20 mg/kg was used as a positive control. A vehicle 
solution containing all the bulk primary metabolites of kiwifruit juice in the same doses found in the fruit was used as 
a negative control, to which all treatment groups were compared. Kiwi 1 strongly reduced the duration of immobility in 
both tests compared to the vehicle-treated group (F(6,88)

TST
 = 15.39, p ≤ 0.0001; F(6,88)

FST
 = 11.79, p ≤ 0.0001), whereas 

Kiwi 2 and 3 were less active, with Kiwi 3 showing minimal effect in the FST (Fig 1A, 1B). Fluoxetine also had no effect 
on the FST as reported in the literature with this strain of mice [33,41]. Locomotor activity was evaluated in the open 
field test (OFT) on day 8 to assess locomotor impairment, but there was no significant difference between any of the 
groups (Fig 1C, 1D).

https://metlin.scripps.edu
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Few specific kiwifruit-derived metabolites are present in post-treatment mouse serum and brain tissue

The fresh kiwifruit juice (Kiwi 1) was analyzed by UPLC-qTOF-MS with an untargeted metabolomics approach. The com-
plex mixture was predominantly composed of primary metabolites such as organic acids and sugars, with lower levels 
of secondary metabolites such as caffeic acid derivatives, flavonoids and indoleamines (Fig 2; S1 Table). Many other 
low-abundance metabolites were also detected, some of which could not be identified (S1 File).

To identify candidate molecules responsible for the observed antidepressant effect, we investigated the bioavailability 
of kiwifruit metabolites in mouse serum and brain tissue at different time points after administration. The Kiwi 1 treatment 
group was compared with vehicle-treated control, and multivariate analysis of the metabolic feature quantification matrix 
was used to find differences between the groups. We applied two forms of chromatography (HILIC and C18 column chem-
istry; S2 File) to include as many metabolites as possible ranging from high to low polarity. Only two kiwifruit metabolites 
were identified in the serum and brain tissues: quinic acid (QA), which is abundant in kiwifruits, and caffeic acid sulfate 
(CAS), probably generated when caffeic acid-based molecules in kiwifruit (caffeic acid glucosides and esters) are metab-
olized in mice (Fig 3A, 3B). Other metabolites in the serum of kiwifruit-treated mice were not present in the kiwifruit juice 
itself (e.g., indoxyl and hydroxybenzene sulfates). These are likely to be products formed when kiwifruit compounds are 

Fig 1.  Dose-dependent antidepressant activity of fresh kiwifruit juice preparations in mice. The effect of undiluted (Kiwi 1) and diluted (Kiwi 2 
and Kiwi 3) kiwifruit juice preparations was tested by measuring the immobility time in the TST (A) and FST (B), and the distance traveled (C) and mean 
velocity (D) of mice in the OFT. Statistical significance was determined by one-way ANOVA followed by Dunnett’s post hoc test. Data are means ± SD 
(n = 12/16 per group; **p ≤ 0.01, ****p ≤ 0.0001 vs. vehicle-treated group). FLX = fluoxetine.

https://doi.org/10.1371/journal.pone.0326134.g001

https://doi.org/10.1371/journal.pone.0326134.g001
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metabolized in mice, or endogenous mouse metabolites that accumulate in response to kiwifruit juice consumption (S2 
Table). In brain samples, the same analysis showed limited statistical significance, probably due to the very low level of 
kiwifruit metabolites found in brain tissues. However, both QA and CAS could be manually extracted from the raw chro-
matograms (Fig 3C, 3D).

Kiwifruit contains relevant amounts of tryptamine (a serotonin agonist in humans) and ~0.5 mg per 100 g fresh weight 
of serotonin [42]. We therefore tested the bioavailability of these indolamines following the oral administration of trypt-
amine and deuterated serotonin (to distinguish it from the endogenous molecule). Neither of these compounds was 
detected in the serum or brain of treated mice.

Quinic acid mimics the effects of kiwifruit juice

Given that only two compounds (QA and CAS) found in mouse brain tissue were traceable to specific kiwifruit molecules, 
we decided to test QA and one caffeic acid glucoside isomer (caffeic acid 3β-D-glucoside, CAG; i.e., the main form of 
caffeic acid in kiwifruit juice that is metabolized to CAS in mice), individually and in combination, at the same concen-
trations found in Kiwi 1. We therefore determined the precise quantity of both molecules in kiwifruit juice using a dilution 
method. We then repeated the 10-day IG trials in mice using these purified components (as well as Kiwi 1, for compari-
son), followed by TST and FST 90 min after the last treatment on day 10. Given that 20 mg/kg fluoxetine was unsuitable 
as a positive control in the TST (Fig 1), we replaced it with escitalopram (Cipralex) administered intraperitoneally (IP) 30 

Fig 2.  The main metabolites present in fresh kiwifruit juice (Kiwi 1). UPLC-qTOF-MS chromatograms in positive ionization (A,B) and negative ion-
ization (C,D) mode reveal metabolites eluting in the first 2 min (A,C) and other metabolites (B,D), shown on a different scale. The following metabolites 
are enumerated: 1, quinic acid; 2, dihexose-deoxyhexose; 3, sucrose; 4, malic acid; 5, ascorbic acid; 7 and 9, quinic acid derivatives; 8, glutathione; 10, 
citric acid; 11, serotonin; 13, phenylalanine; 14, caffeoyl diglucoside; 16, caffeic acid glucoside; 18, esculetin-6-D-glucoside; 20, caffeic acid-3-β-D- 
glucoside; 21, tryptamine; 22, fraxin; 25, epicatechin. Other peak numbers were unidentified. For all UPLC-qTOF-MS features, see S1 Table.

https://doi.org/10.1371/journal.pone.0326134.g002

https://doi.org/10.1371/journal.pone.0326134.g002
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min before the test at a concentration of 10 mg/kg [43,44]. As in the previous experiment, Kiwi 1 significantly reduced the 
duration of immobility in both tests compared to the vehicle-treated group. QA given alone or in combination with CAG, at 
the same concentrations found in Kiwi 1, also significantly reduced the duration of immobility, albeit not to the same extent 
as the whole juice. CAG alone had no effect, even taking into account the high inter-subject variability within this group 
(F(5,66)

TST
 = 26.33, p ≤ 0.0001; F(5,66)

FST
 = 11.54, p ≤ 0.0001) (Fig 4). Escitalopram was a good positive control for both 

tests. OFT on day 8 again excluded locomotor impairment as an explanation for the results. Accordingly, we concluded 
that purified QA, administered at the same concentration found in kiwifruit juice, can partially mimic the antidepressant 
activity of the juice in mice, indicating that QA is one of the bioactive antidepressant components.

Following the behavioral experiments, serum and brain tissue samples were collected and analyzed by UPLC-
qTOF-MS. Interestingly, the levels of QA and CAS in serum, and the level of QA in the brain, were lower in all treatments 

Fig 3.  Untargeted metabolomic analysis of mouse serum and brain tissue following the IG administration of kiwifruit juice (Kiwi 1). A,B) 
O2PLS-DA overview score plot and S-loading plot of serum samples analyzed in negative ionization mode following separation on C18 and HILIC 
columns (each dot represents one sample in the score plots or one metabolite in the S-loading plots). C,D) Relative amounts of QA and CAS in the brain 
30 min after the final administration of Kiwi 1. Data are means ± SD (n = 12/16 per group). Statistical significance was evaluated using Student’s t-test 
(*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 ****p ≤ 0.0001).

https://doi.org/10.1371/journal.pone.0326134.g003

https://doi.org/10.1371/journal.pone.0326134.g003
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with purified metabolites compared to the levels of the same molecules following treatment with Kiwi 1 (Fig 5). CAS was 
detected in the brain but was not evaluated because the amount was below the lower limit of quantification. This suggests 
kiwifruit contains other components that promote the adsorption and/or stability of these molecules in vivo. The lower 
activity of pure QA compared with Kiwi 1 may thus reflect the activity of other low-level, or even undetectable, kiwifruit 
molecules or, as suggested by the lower level of QA in QA-treated mice, the limited absorption and/or stability of QA when 
ingested in its pure form.

The pharmacokinetics of QA were determined in mice that were treated with Kiwi 1 (Fig 6A, 6B) or the pure 
molecule (Fig 6C, 6D) and then euthanized at different time points after administration. We also evaluated the 
real-time tissue penetration profile of QA in the brain parenchyma by perfusing the brains with cold 0.9% saline for 
5 min (Fig 6E, 6F).

As anticipated, QA declined in the brain after perfusion regardless of the treatment group, but was nevertheless 
detected in both types of sample.

Fig 4.  Antidepressant effects of the single and combined administration of QA and CAG in relation to kiwifruit juice. The effect of kiwifruit juice 
(Kiwi 1), vehicle, QA, CAG and their combination (QA + CAG) was assessed by measuring the immobility time in the TST (A) and FST (B), and the dis-
tance travelled (C) and mean velocity (D) in the OFT. Data are means ± SD (n = 12 per group). Statistical significance was evaluated by one-way ANOVA 
followed by Dunnett’s post hoc test (* p ≤ 0.05, **p ≤ 0.01, ****p ≤ 0.0001 vs. vehicle-treated group). ESC = escitalopram.

https://doi.org/10.1371/journal.pone.0326134.g004

https://doi.org/10.1371/journal.pone.0326134.g004
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Discussion

The antidepressant activity of green kiwifruit juice was assessed in mice by applying the TST and FST, two behavioral par-
adigms widely used to assess depressive-like behavior [45–47] and to evaluate the potency of antidepressant drugs or the 
antidepressant effects of natural extracts [48]. Both models have long been used in rodents due to their high face, con-
struct and predictive validity [49]. We chose IG administration to precisely control dosage and to mimic the real absorption 
of phytocomplexes. Kiwifruit juice significantly reduced immobility time in both tests (even compared to standard antide-
pressants) without locomotor impairment, as confirmed by OFT. We initially used 20 mg/kg fluoxetine as a positive control, 
a dosage consistent with plasma levels observed in human patients undergoing acute or chronic regimes [41]. However, 
the drug did not affect FST outcomes, as previously reported for this strain of mice [33]. We therefore switched to escitalo-
pram as a positive control in subsequent experiments.

Previous studies have linked green and gold kiwifruit with antidepressant effects in mice and humans, respectively, 
although the active compounds have never been identified [22,23]. A recent double-blind registered and approved trial to 
assess the impact of vitamin C and vitamin C-rich SunGold kiwifruit on mood enhancement revealed that the consumption 
of two fruits per day improved the mood more effectively than either a placebo or pure vitamin C. This effect was apparent 
even though the two treatments showed equivalent vitamin C bioavailability, suggesting that additional kiwifruit compo-
nents contributed to mental health improvements [50].

Other investigations have shown that green kiwifruit improves sleep quality in young adults with sleep disorders 
[51,52]. Both green and gold kiwifruit contains a relevant amount of serotonin [53] and its plant precursor tryptamine [42]. 
In principle, serotonin and its derivative melatonin could be involved in sleep improvement [54], even though we did not 
detect melatonin in our experiments. Tryptamine could also act in the same pathway, as it functions as a serotonin ago-
nist [55,56]. Dietary serotonin and tryptamine are accumulated in many fruits, as plantains, bananas, pineapples, plumes, 
tomatoes, walnut and peppers [57–59]. The two indolamines are generally not bioavailable because they are broken down 
by the monoamine oxidases MAO-A and MAO-B in the gut, giving rise to 5-hydroxyindoleacetic acid [53]; however, they 
may survive in the form of a phytocomplex derived from fruits or vegetables, allowing synergic activity. As an example, the 
shamanic beer ayahuasca retains the hallucinogenic properties of dimethyltryptamine contained in the herb Psychotria 
viridis thanks to the ability of β-carbolines (harmine, harmaline and tetrahydroharmine) in Banisteriopsis caapi to inhibit 
MAO [60,61]. Similar inhibitory components in kiwifruits could change the fate of fruit-derived serotonin and tryptamine by 
making them more bioavailable.

Fig 5.  Bioavailability of QA and CAG administered as pure compounds or as components of kiwifruit juice (Kiwi-1). A) The relative quantity of 
QA in serum following separation by C18 chromatography. B) The relative quantity of CAG in serum following separation by HILIC. C) The relative quan-
tity of QA in brain tissue following separation by C18 chromatography. Data are means ± SD (n = 12 per group). Statistical significance was determined by 
one-way ANOVA followed by Dunnett’s post hoc test (**p ≤ 0.01, ****p ≤ 0.0001 vs. Kiwi 1-treated group).

https://doi.org/10.1371/journal.pone.0326134.g005

https://doi.org/10.1371/journal.pone.0326134.g005
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Fig 6.  Pharmacokinetics of QA in the serum and brain tissues of mice after kiwifruit (Kiwi-1) or pure QA administration. Relative amount of QA 
in the serum (A,C) and brain tissue (B,D) of mice following the administration of kiwifruit juice (A,B) or pure compound (C,D). Each time point represents 
the mean ± SD of n = 4 readings. Relative amount of QA in the brain with and without perfusion (E) and a comparison of perfused animals treated with 
kiwifruit or with QA 30 min before they were euthanized (F). Data are means ± SD (n = 6 per group). Statistical significance was evaluated using an 
unpaired t-test (**p ≤ 0.01, ****p ≤ 0.0001).

https://doi.org/10.1371/journal.pone.0326134.g006

https://doi.org/10.1371/journal.pone.0326134.g006
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Despite the presence of MAO inhibitors in kiwifruit [31], fruit-derived serotonin and tryptamine were not present 
in the blood or brain of mice fed on kiwifruit juice. However, quinic acid (QA) was present in the blood and (at lower 
levels) in the brain, confirming its ability to cross the blood–brain barrier. TST and FST results confirmed the antide-
pressant effects of this compound. Caffeic acid sulfate (a metabolic breakdown product of the caffeic acid glucosides 
found in kiwifruit) was also present, but did not significantly influence behavior in the TST and FST. Not all the activ-
ity of fruit juice could be explained by QA because the administration of the pure molecule at the same concentration 
found in kiwifruit juice was less effective than whole fruit juice. This suggests there is a synergistic effect involving 
QA and other metabolites or juice components that increase its bioavailability and/or activity. As recently revised [62], 
various plant components influence the bioavailability of secondary metabolites. For instance, proteins, dietary fiber, 
and minerals negatively affect the bioavailability of flavonoids, while lipids, carbohydrates, vitamins, alkaloids, carot-
enoids and other flavonoids enhance it. The juice used for our experiments likely contained numerous components 
beyond the metabolites detected and described in this work, including proteins, soluble carbohydrates, minerals, and 
vitamins, while insoluble carbohydrates were probably eliminated by centrifugation. Any of these remaining compo-
nents could potentially influence the bioavailability of QA. Subsequent experiments showed that the accumulation 
of QA, administered as a component of kiwifruit juice or a pure molecule, was very rapid, that QA was able to cross 
the blood–brain barrier and penetrate the brain parenchyma, and that the amount of QA in the serum and brain was 
lower when administered as pure molecule or in combination with caffeic acid 3β-D-glucoside (CAG). Thus, the lower 
activity of pure QA compared to fruit juice in the TST and FST can largely be attributed to its reduced ability to reach 
the brain parenchyma.

The effects of individual metabolites in fresh fruits and vegetables are difficult to unravel, not only due to the large 
number of different molecules but also because their activity could depend on additive, synergic and antagonist effects 
involving other compounds [63,64]. Many factors could also influence the bioavailability of metabolites, as is the case 
of dimethyltryptamine in ayahuasca beer [60,61]. Synergy and antagonism are difficult to study rigorously, so the devel-
opment of drugs from natural products tends to focus on reducing complex mixtures to single bioactive components 
[65]. However, synergies among combinations of phytochemicals can promote the solubility, safety, absorption, stability 
and/or bioavailability of bioactive compounds [64]. Antagonism, which has been investigated in less detail, causes the 
effects of active constituents to be masked by other compounds in a complex mixture. Such synergistic and antagonistic 
relationships may explain why no single compound can replace the combination of natural phytochemicals in fruits and 
vegetables to achieve the same health benefits [63]. We found that QA administered alone, at the same concentration 
of the kiwifruit juice, had less activity than undiluted juice, correlating with the lower levels detected in serum and brain 
samples. This suggests that the whole phytocomplex could be important for stability and/or adsorption but not necessar-
ily for activity.

QA was discovered in the medicinal plant Cinchona officinalis [66] and is synthesized from the shikimic acid precursor 
3-dehydroquinate. Free QA is uncommon in plants, but accumulates mainly in fruits, whereas most tissues contain QA 
esterified with other secondary metabolites, especially hydroxycinnamic acids such as caffeic acid [67]. Accordingly, the 
bioactive properties of free QA are rarely discussed [68] whereas the effects of quinic acid esters are well characterized 
[67,69], including activities that influence neuroprotection, cognition and mood in animal models [70–72]. In humans, 
caffeic acid esters of QA are absorbed partially as intact molecules and partially after hydrolysis in the stomach and small 
intestine [67,69]. The metabolites released by hydrolysis are metabolized further by the gut microbiome as well as mam-
malian phase II metabolism [73]. The hydrolysis and microbial metabolism of caffeoylquinic acid has also been described 
in rats [74]. In our experimental mice, we found that caffeic acid derived from CAG was sulfated and inactive, whereas 
free QA – detected in the brain parenchyma – retained the activity. Its release from more abundant dietary esters [69] sug-
gests that QA could be, at least partially, responsible for the many bioactivities typically attributed to these esters, includ-
ing the ubiquitous chlorogenic acids.
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